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Integrative transcriptome analyses of the aging
brain implicate altered splicing in Alzheimer's

disease susceptibility
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Here we use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral prefrontal cortex (DLPFC)
of 450 subjects from two aging cohorts. Hundreds of aberrant pre-mRNA splicing events are reproducibly associated with
Alzheimer's disease. We also generate a catalog of splicing quantitative trait loci (sQTL) effects: splicing of 3,006 genes is
influenced by genetic variation. We report that altered splicing is the mechanism for the effects of the PICALM, CLU and PTK2B
susceptibility alleles. Furthermore, we performed a transcriptome-wide association study and identified 21 genes with signifi-
cant associations with Alzheimer's disease, many of which are found in known loci, whereas 8 are in novel loci. These results
highlight the convergence of old and new genes associated with Alzheimer's disease in autophagy-lysosomal-related path-
ways. Overall, this study of the transcriptome of the aging brain provides evidence that dysregulation of mRNA splicing is a
feature of Alzheimer's disease and is, in some cases, genetically driven.

latory mechanism through which pre-mRNA molecules can

produce multiple distinct mRNAs. Alternative splicing affects
over 95% of human genes', contributing to the functional diversity
and complexity of proteins expressed in tissues”. Alternative splic-
ing is abundant in human nervous system tissues’ and contrib-
utes to phenotypic differences within and between individuals:
at least 20% of disease-causing mutations may affect pre-mRNA
splicing®. Mutations in RNA-binding proteins (RBPs) involved in
splicing regulation and aberrant splicing have been linked to amyo-
trophic lateral sclerosis® and autism®. Furthermore, disruptions in
RNA metabolism, including mRNA splicing, are associated with
age-related disorders, such as frontotemporal lobar dementia’,
Parkinson’s disease® and Alzheimer’s disease®'’. These previous
studies have mostly focused on alternative splicing of selected can-
didate genes, including the amyloid precursor protein (APP)* and
microtubule-associated protein tau (MAPT)*>''. However, pro-
teomic profiles of brains from patients with Alzheimer’s disease
identified increased aggregation of insoluble Ul snRNP, a small
nuclear RNA component of the spliceosomal complex, suggesting
that the core splicing machinery may be altered in Alzheimer’s dis-
ease'’. Apart from these studies, there have been few investigations
of the possibility that more widespread splicing disruption affects

Q Iternative splicing is an important posttranscriptional regu-

brain transcriptomes in Alzheimer’s disease. However, a compre-
hensive study of cis- and trans-acting genetic factors that regulate
alternative splicing in aging brains is lacking.

Over 24 genetic loci have now been associated with Alzheimer’s
disease susceptibility by genome-wide association studies (GWAS)",
and these variants are enriched for associations with gene expres-
sion levels in peripheral myeloid cells and often lie within cis-
regulatory elements”. For example, we reported that one of these
variants influences splicing of CD33'. Given the high abundance of
alternative splicing in the brain, we hypothesized that other genetic
variants associated with Alzheimer’s disease could also affect pre-
mRNA splicing, possibly by disrupting efficient binding of splicing
factors.

Here, by applying state-of-the-art analytic methods, we gener-
ated a comprehensive genome-wide map of splicing variation in
the aging prefrontal cortex. We use this map to identify: (1) aber-
rant mRNA splicing events related to Alzheimer’s disease; (2) a
new reference of thousands of genetic variants influencing local
mRNA splicing in the brain; (3) trans-acting splicing factors that
are involved in intron excision; and (4) association of GWAS find-
ings to specific genes within each Alzheimer’s disease susceptibility
locus. Overall, we deepen our understanding of genetic regulation
in the transcriptome of the aging brain and provide a foundation for
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Fig. 1| Overview of the study. RNA was sequenced from the gray matter of the DLPFC of 542 samples (450 remained after quality control and matching

for genotype data) from the ROS/MAP cohort. RNA-seq data were processed, aligned and quantified by our parallelized pipeline. The intronic usage ratios
for each cluster were then computed using LeafCutter?®, standardized (across individuals) and quantile normalized. The intronic usage ratios were used for
differential splicing analysis, for calling sQTLs and for TWAS. TWAS was performed on summary statistics from IGAP Alzheimer's disease (AD) GWAS of

74,046 individuals™.

the formulation of mechanistic hypotheses for Alzheimer’s disease
and other neurodegenerative diseases.

Results

Aberrant mRNA splicing in Alzheimer’s disease. We deeply
sequenced RNA from frozen DLPFC samples obtained at autopsy
from 450 participants of either the Religious Order Study (ROS)
or the Memory and Aging Project (MAP), two prospective cohort
studies of aging that include brain donation. All subjects were with-
out known dementia at study entry. During the study, some sub-
jects experienced cognitive decline, and, at autopsy, they displayed a
range of amyloid-p and tau pathology, with 60% of subjects having
a pathologic diagnosis of Alzheimer’s disease'”'® (Supplementary
Table 1). We have previously reported changes in RNA expression
level in relation to Alzheimer’s disease in these data®.

Following alignment and quantification of RNA-sequencing
(RNA-seq) reads, LeafCutter® was applied to estimate the ‘percentage
spliced-in’ values (PSI) for local alternative splicing events (Fig. 1).
We identified 53,251 alternatively spliced intronic excision clus-
ters in 16,557 genes. We report more alternatively spliced intron
clusters in the cortex than any other previously analyzed tissues or
brain regions®'. To identify aberrant splicing events, we analyzed
the association between the PSI of each intron excision event and
a pathologic diagnosis of Alzheimer’s disease or quantitative analy-
ses of neuropathology, including neuritic plaques, neurofibrillary
tangles and amyloid-f burden, while accounting for confound-
ing factors. At a false-discovery rate (FDR) <0.05, we identified a
total of 82 differentially spliced introns in 67 genes associated with
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different neuropathologies, including 5 associated with neuritic
plaques, 20 associated with amyloid-f burden and 48 with neuro-
fibrillary tangles (Supplementary Table 2). A heat map of the top
differentially spliced introns associated with neurofibrillary tangles
is shown in Fig. 2a. On average, these differentially excised introns
explain around 2-13% of total variation in neuropathologic burden
after accounting for biological and technical covariates (Fig. 2b and
Supplementary Fig. 1).

To test for association with the clinical diagnosis of Alzheimer’s
disease, we used LeafCutter” to identify differentially spliced
introns by jointly modeling intron clusters using a Dirichlet-
multinomial generalized linear model (Methods). At a Bonferroni-
corrected rate of P<0.05, we identified a total of 87 intron clusters
(corresponding to 84 genes) that displayed altered splicing in rela-
tion to Alzheimer’s disease (Supplementary Table 3). Of these, 11
genes were also differentially expressed, suggesting that our splic-
ing analysis is identifying novel associations that had been missed
in conventional approaches evaluating gene expression levels alone.
For example, the most significant differentially excised intron
(chr10:3,147,351-3,147,585) is found in the phosphofructokinase
gene (PFKP): the frequency of this splicing event was associated
with Alzheimer’s disease (P<4.9%x107*; f=—-0.27) and all patho-
logic analyses that were tested in this study. Similarly, the next most
differentially excised intron (chr14:21,490,656-21,491,400) asso-
ciated with Alzheimer’s disease is found in the a/f-hydrolase fold
protein gene NDRG family member 2 (NDRG2) (P<5.6%x107";
$=—0.058) and is also associated with measures of both amyloid-f
and tau pathology (Fig. 2¢). Differential splicing of both PFKP and
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differently excised introns in NDRGZ2 in relation to a clinical diagnosis of Alzheimer’s disease (AD) in ROS/MAP and in MSBB. The right two panels display
the association of amyloid-p or tangle burden to intron usage in NDRG2. d, Differentially excised intron in APP upon tau overexpression in iPSC neurons.

NDRG2 in human brains has been previously shown to be asso-
ciated with Alzheimer’s disease pathogenesis*»*, offering a mea-
sure of replication. Other genes with differentially excised introns
associated with Alzheimer’s disease at a Bonferroni-corrected
P<0.05 include APP (P<1.6X107% f=-0.003) and genes in
known GWAS loci such as PICALM (P<0.02; #=0.005) and CLU
(P<3.2x107% f=-0.019). These differentially spliced genes are
not necessarily expressed in a single cell type (for example, neu-
rons), but are expressed across many cell types, including astrocytes
(Supplementary Figs. 2, 3 and Supplementary Table 4). Moreover,
co-splicing network analysis using WGCNA?* suggests that the dif-
ferentially spliced genes are enriched in specific functional mod-
ules and are part of a coherent biological process (Supplementary
Figs. 2, 3, Supplementary Tables 5-7 and Supplementary Note).
Next, to assess the robustness of our results, we performed a rep-
lication analysis using RNA-seq data from the Mount Sinai Brain
Bank (MSBB)*, which includes 301 brain samples from patients
with Alzheimer’s disease and controls (Supplementary Note). Of
the 84 genes with differentially spliced intron clusters in ROS/
MAP, 52 (including APP, PFKP and NDRG?2) were significant at
a Bonferroni-corrected P<0.05 threshold in the MSBB data and
the effect sizes are highly correlated between the two datasets
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(Pearson’s r=0.35; P<6.75x107"*) (Fig. 2¢, Supplementary Fig. 4
and Supplementary Table 8). This constitutes an independent rep-
lication of specific, aberrant splicing alterations in brains from
patients with Alzheimer’s disease. Finally, to further validate and
explore the mechanism of our observations, we analyzed RNA-seq
data derived from induced pluripotent stem cell (iPSC)-derived
neurons and neurons from the same line overexpressing tau: dif-
ferential intron excision was noted for 42 genes (FDR <0.05), of
which 11 genes overlap with the Alzheimer’s disease-associated
splicing in the cortex including APP, PICALM and NDRG2 (Fig. 2d
and Supplementary Table 9). Despite the small sample size, these
in vitro data suggest that tau accumulation in neurons—at a stage
in which neurons are accumulating phosphorylated tau but are not
apoptotic—may be sufficient to induce some of the splicing altera-
tions that we observed in cortical tissue of human subjects; this in
vitro validation of disease-related splicing changes suggests that this
Alzheimer’s disease-altered splicing (1) is unlikely to be related to
confounding factors from autopsy or the agonal state and (2) has
specific target RNAs that can be modeled in vitro.

Genetic effects on pre-mRNA splicing in aging brains. We next
performed a sQTL study to identify local genetic effects that drive
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variation in RNA splicing in the DLPFC. First, we assessed the
splice events from the LeafCutter” algorithm (Fig. 1); 30% of these
53,251 intron excision clusters are novel splicing events, not previ-
ously reported in other sQTL studies. The PSI values were adjusted
for known and hidden factors (15 principal components) and then
fit to imputed SNP data using an additive linear model implemented
in fastQTL* (Methods and Supplementary Fig. 5). At FDR <0.05,
we found 9,028 sQTLs in 3,006 genes (Supplementary Table 10).
As expected, splicing was most strongly affected by variants in
the splice region itself (59.8%): 20.2% of variants are mapped to
splice acceptor sites and 16.4% to splice donor sites. The remain-
ing (23.2%) mapped to other splice regions or are found within an
intron (Supplementary Fig. 6). Furthermore, sQTLs are mapped
to distinct regulatory features as defined by 15 chromatin states in
DLPFC*: sQTLs were significantly enriched in actively transcribed
regions and enhancers. They are depleted in repressed chromatin
marked with polycomb, heterochromatin and quiescent regions
(Fig. 3a), consistent with the diminished transcription noted in
these regions.

To assess the extent of sQTL replication, we compared our
sQTLs to the recently published dataset from the CommonMind
Consortium (CMC), consisting of DLPFC profiles from 258
individuals with schizophrenia and 279 control subjects®
(Supplementary Note). Our sQTLs yield a Storey’s 7; =0.78 in the
CMC data, suggesting substantial sharing of sQTLs between these
two different brain collections (Fig. 3b). Moreover, 93% of shared
sQTLs showed the same direction of effect (Fig. 3b). The fraction
of novel sQTLs deserves further evaluation to assess the extent to
which they may be context-specific given that the average age at
death of our participants (88 years) is significantly older than that
of the CMC dataset.
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In agreement with recent findings in lymphoblastoid cell lines*',
we found that a majority of sQTLs act independent of gene expres-
sion effects, as evident by the low degree of sharing between sQTLs
and expression (e)QTLs* from the same brains (z, =0.18) (Fig. 3c).
Of the 9,045 lead sQTL SNPs, only 42 are also a lead eQTL, sug-
gesting that a substantial fraction of sQTLs are unique and are not
detected by standard eQTL analysis.

To further understand the mechanisms underlying sQTLs, we
assessed the overlap of sQTLs with SNPs influencing epigenomic
marks (xQTLs), such as DNA methylation (mQTL) and histone H3
acetylation on lysine 9 (H3K9ac, haQTL)¥, that are available from
the same DLPFC samples. Indeed, we found that such xQTLs* are
significantly enriched among sQTLs when compared to randomly
selected, matched SNPs (Kolmogorov-Smirnov test P<0.001): of
the lead sQTL, 9% (578) were also associated with an haQTL and
19% (1,246) were also an mQTL (Fig. 3d). This suggests that an
important subset of genetic variants co-influences splicing, methyl-
ation levels and histone modifications. In a complementary analysis,
we found significant sharing of sQTL SNPs among SNPs that also
influence histone acetylation (7, =0.74) or methylation (z, =0.82).
These overlaps suggest that there is a contribution of epigenomic
regulation in splicing.

Given prior reports’*’, we evaluated whether our sQTLs from
the aging brain were enriched for Alzheimer’s disease susceptibil-
ity variants (Fig. 3e,f). We also assessed enrichment of Alzheimer’s
disease SNPs (GWAS P<1x107°) in splicing, methylation or
expression QTLs from DLPFC®, monocytes'>"', neutrophils* and T
cells'>*!. We found that DLPFC sQTLs are more likely to be enriched
for Alzheimer’s disease GWAS SNPs, followed by sQTL and eQTL
from monocytes (Fig. 3f). These findings highlight (1) the impor-
tant role of RNA splicing on variation in Alzheimer’s disease
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susceptibility, (2) the prominent role of myeloid cells in Alzheimer’s
disease susceptibility’® and (3) the fact that a number of Alzheimer’s
disease variants have mechanisms that may be mediated through
non-myeloid effects.

Some of these effects of Alzheimer’s disease variants on splicing
are known, such as the eightfold increase in full-length CD33 iso-
form expression'®”, but several of these variants—in CLU, PICALM
and PTK2B—have not been previously reported (Supplementary
Table 10). These results delineate the initial events along the cascade
of functional consequences for these three Alzheimer’s disease vari-
ants and provide important mechanistic insights into their develop-
ment as potential therapeutic targets.

Splicing regulators associated with alternative splicing. Splicing
of pre-mRNA is catalyzed by a large ribonucleoprotein complex
called the spliceosome, which consists of five small nuclear RNAs
and numerous splicing factors®. To identify brain splicing factors
that regulate sQTL events in trans, we evaluated whether the lead
sQTL SNPs that were identified in our study are enriched in RBP
binding sites using publicly available cross-linking immunoprecipi-
tation-sequencing (CLIP-seq) datasets from 76 RBPs in CLIPdb™.
We found that binding targets of 18 RBPs are significantly enriched
among lead sQTLs (Fig. 4a). The most enriched RBP is PTBP], fol-
lowed by HNRNPC, CPSF7 and ELAVLI (P <0.05, Fisher’s exact test
with Benjamini-Hochberg correction). Notably, the enrichment for
neuronal ELAVLI RBP target sites is consistent with a recent report
that, upon neuronal ELAVLI depletion, BINI1 and PICALM tran-
scripts were found to have lower exon inclusion for those sites in
which ELAVL binding sites directly overlapped with SNPs associ-
ated with Alzheimer’s disease™.

On the other hand, we also observed significant enrichment
for the lead sQTL SNPs within the binding sites for a number of
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heterogeneous nuclear ribonucleoproteins (hnRNP), including
hnRNP C (P<0.009). Furthermore, we find that the expression
levels of hnRNP splicing factors are correlated with intronic exci-
sion levels of hundreds of genes, many of which are in Alzheimer’s
disease susceptibility loci including BIN1, PICALM, APP and CLU
(Fig. 4b and Supplementary Figs. 7, 8). The hnRNP C factor has
been linked to Alzheimer’s disease in previous studies, including in
a recent biochemical study that described the translational regula-
tion of APP mRNA by hnRNP C*. This observation goes towards
the mechanism of the sQTL: consistent with the assumption that
altering the sequence of a binding site changes the likelihood that a
splicing event occurs in vivo. In one example of an sQTL that affects
intron usage, a SNP within an intron of TBCID?7 is found within
CLIP-defined binding sites for hnRNP C as well as other RBPs
(Fig. 4c). Thus, incorporating RBP binding sites as a functional
annotation enables us to improve our accuracy when selecting plau-
sible variants that may disrupt binding of splicing factors that cause
the alternative-splicing event. Further biochemical studies will be
required to understand the full regulatory program that orches-
trates the disease-related splicing changes.

Transcriptome-wide association studies prioritize Alzheimer’s
disease genes. To identify genes for which mRNA expression or
alternative splicing is associated with Alzheimers disease and
mediated by genetic variation, we performed two transcriptome-
wide association studies (TWAS)*” using either the ROS/MAP
expression data or its intronic excision levels as reference panels
to reanalyze summary level data from the International Genomics
of Alzheimer’s Project (IGAP) GWAS™. A total of 4,746 genes and
15,013 differentially spliced introns could be analyzed, and we
identified 21 genes at FDR < 0.05 for which imputed gene expres-
sion or intronic excision levels were significantly associated with
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Alzheimer’s disease status (Fig. 5a and Supplementary Table 11).
Among these, there were genes in known Alzheimer’s disease loci
including SPI1, CR1, PTK2B, CLU, MTCH2 and PICALM. These
results help to pinpoint the likely gene that is the target of the known
susceptibility variant in each locus, particularly at the MTCH2
locus in which the functional consequences of the risk allele were
unclear. However, the new genes associated with Alzheimer’s dis-
ease are even more interesting, and eight of these associations are
found in loci that showed only suggestive evidence of association
in the IGAP study. These genes include AP2A1, AP2A2, FUS,
MAPIB, TBC1D7 and others that are now significant at a thresh-
old adjusted for genome-wide testing. This analysis therefore helps
to prioritize the long list of suggestive IGAP associations (Fig. 5a
and Supplementary Figs. 9-17). Notably, both AP2A1 and MAPIB
were recently identified as hub proteins in Alzheimer’s disease pro-
teome networks and had lower protein expression levels in brains
from patients with Alzheimer’s disease compared to those from
patients with amyotrophic lateral sclerosis, Parkinson’s disease or
from control subjects®.
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To replicate these results, we first assessed whether an expres-
sion imputation model built using the CMC dataset™ yielded simi-
lar results when it is deployed in the IGAP GWAS data. We focused
on the 21 significantly associated genes described here: four genes
(CR1, PTK2B, TBCID7 and SH3YL1) replicated at FDR<0.05 and
two genes (AP2A1 and PHKB) were suggestive at P<0.05 with the
expression and splicing inference from CMC (Fig. 5b). The direc-
tions of effect for all six associations were consistent in both datasets
(Fig. 5b). Thus, we see replication of our results: they are not due to
the unique properties of the ROS/MAP dataset. Second, we used
a different Alzheimer’s disease GWAS—the UK Biobank (UKBB)
GWAS by proxy”—to replicate the IGAP TWAS results. We note
that, despite analyzing data from 116,196 subjects, the UKBB
GWAS is underpowered since the GWAS does not use Alzheimer’s
disease cases but, rather, subjects who have a first-degree relative
with Alzheimer’s disease as ‘cases’. Nevertheless, we were able to rep-
licate (at a nominal P < 0.05) seven of our IGAP TWAS associations
in the UKBB TWAS (Fig. 5c). These two complementary replica-
tion efforts demonstrate the robustness of our results. Finally, we
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performed a TWAS using the summary statistics of a meta-analysis
of IGAP and UKBB GWAS, and identified three additional genes
(ABCA7, RHBDFI and VPS53) that meet a genome-wide significant
threshold in the meta-analysis; ABCA? is one of the well-validated
Alzheimer’s disease loci (Supplementary Table 12).

Most of the TWAS associations are the result of differential intron
usage, suggesting the importance of pre-mRNA splicing in Alzheimer’s
disease (Fig. 5a). As an example, a TWAS association with intron usage
at PTK2B, a known Alzheimer’s disease susceptibility locus, is shown
in Fig. 5d. We often observed multiple TWAS-associated genes in the
same locus, likely owing to co-expression of genes in close physical
proximity or allelic heterogeneity within the susceptibility locus®. To
account for multiple associations in the same locus, we applied con-
ditional and joint association methods that rely on summary statis-
tics*™* to identify genes that had significant TWAS associations when
analyzed jointly (Figs. 5e, 6b). A region with multiple TWAS associa-
tions includes the PTK2B-CLU locus, which shows independent co-
localized associations for both GWAS' and splicing effects (Fig. 5¢).
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Refining known associations is important to translate results
into functional studies, but the newly validated Alzheimer’s dis-
ease genes (Fig. 6a,b) also offer new insights into disease: we used
GeNets* to evaluate the connectivity of these new Alzheimer’s dis-
ease genes with the network of known susceptibility genes that are
interconnected by protein-protein interaction (PPI)*’. These new
and known genes associated with Alzheimer’s disease susceptibil-
ity are directly connected (that is, they form shared ‘communities’;
P <0.006) (Fig. 6¢). Furthermore, this joint network is enriched for
endocytosis pathways (P <0.0002), highlighting the existing sug-
gestion that endocytosis pathways are preferentially targeted in
Alzheimer’s disease. The enrichment for an autophagy-lysosomal-
related pathway (P < 0.003) is more interesting (Fig. 6¢). The genes
in the autophagy-lysosomal-related pathway (AP2A2, AP2A1 and
MAPIB) form a statistically significant (P<4.3Xx107*) PPI sub-
network with known Alzheimer’s disease genes (PTK2B, PICALM
and BINI) (Fig. 6d). This is consistent with prior work that has
implicated protein-degradation pathways in Alzheimer’s disease*.
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Overall, these PPI analyses suggest that our new TWAS-derived
genes are not a random set of genes but are part of an Alzheimer’s
disease network.

Discussion

In this study, we directly examined alternative splicing events in
a large dataset of aging brains, which led to the observations that
specific alternative splicing events are reproducibly associated with
Alzheimer’s disease and that certain validated genetic associations
affect splicing of a nearby gene as the proximal functional conse-
quence of the susceptibility allele. Our replication efforts demon-
strate that the observed Alzheimer’s disease-related perturbations in
splicing are not simply owing to spliceosomal failure: specific genes
are reproducibly affected in a specific manner. Furthermore, results
from our in vitro model of tau overexpression in iPSC-derived neu-
rons suggest that perturbation of MAPT may be sufficient to cause
at least a subset of the disease-related splicing changes that are
observed in the human cortex at autopsy.

We used the TWAS approach, which leverages our splicing map
and common genetic variants to test the hypothesis that the effect of
such variants in Alzheimer’s disease is mediated by altering splicing
levels. These analyses confirmed many of the known Alzheimer’s
disease genes (that is, CLU and PTK2B), which supports the role of
regulation of splicing levels as key mechanisms in certain loci, but
also found several new loci: TBC1D7, AP2A1, AP2A2 and MAPIB
(Figs. 5a,6b and Supplementary Figs. 7, 9, 13). These new genes
reinforce the association of the Clathrin-AP2 adaptor complex
with Alzheimer’s disease susceptibility*”. Both AP2A2 and AP2AI
encode components of the AP2 adaptor complex that serves as a
cargo receptor, selectively sorting membrane proteins involved in
receptor-mediated endocytosis*. The AP2 complex and PICALM
interact with APP, directing it towards degradation and autophagy**.

Our study also offers insights for several well-known Alzheimer’s
disease loci in which the gene was known but the functional mecha-
nism remained unclear. Similar to our work in CD33', the careful
analysis of these cortical data highlights a specific splicing mecha-
nism for the Alzheimer’s disease risk alleles at CLU, PICALM and
PTK2B. All three are complex proteins with a large number of
exons, and our results prioritize specific domains in these proteins
that contain the functional domain that influences Alzheimer’s
disease risk. Furthermore, our analyses of RBPs involved in splic-
ing regulation of Alzheimer’s disease susceptibility genes including
PICALM, and RNA-binding site analysis of HNRNPC (Fig. 4c and
Supplementary Fig. 6) and ELAVL helps to prioritize the variant that
may be driving the genetic association and to elaborate the series of
events upstream of the susceptibility variant that enable its expres-
sion. Thus, the catalog of splicing variants made available with this
study provides a starting point for further focused molecular and
biochemical experimental validation to fully elucidate the role of
these splicing variants in the etiology of Alzheimer’s disease.

This study has several limitations. We only characterize splicing
events in one region (the DLPFC) of the aging brain. The DLPFC
is a region that is affected by amyloid-p pathology relatively early
as it spreads throughout the neocortex”. The accumulation of tau
pathology progresses in a stereotypic manner captured by the Braak
stages®, and the DLPFC displays accumulation of neurofibril-
lary tangles containing tau typically when individuals begin to be
symptomatic. Thus, both pathological amyloid-f and tau accumu-
late in the DLPFC in Alzheimer’s disease, and we use quantitative
measures of these pathologies to enhance our power in discovering
the molecular features that are associated with these pathologies.
Some of these splicing changes may contribute to the accumulation
of pathological amyloid-f or tau whereas others may be a reaction
to the presence of pathological amyloid-p or tau accumulation or
may be the result of indirect effects of the pathology in other brain
regions. Currently, we cannot differentiate these three sources of
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variation in our results. Expression datasets from multiple brain
regions exist in the Genotype-Tissue Expression (GTEx) project®,
but the sample size is too small (n =88-136) to build a robust tran-
scriptome model for TWAS. The MSBB has RNA-seq data across
three brain regions but owing to the lack of availability for individ-
ual level genotypes, we are unable to build reference models from
those data. Another limitation of this study is the small sample size
of the in vitro experiment; thus, these intriguing results will require
testing in a much larger number of iPSC lines to confirm that this
effect of MAPT overexpression is generalizable. We note that these
MAPT-overexpressing iPSC-derived neurons are functioning nor-
mally at the time when they were sampled; thus, these data suggest
that at least some of the disease-associated splicing changes that we
report may occur very early in the series of molecular events that are
caused by perturbation in MAPT expression.

This transcriptome-wide reference map of RNA splicing in the
aging cortex is a new resource that highlights strong effects of neu-
ropathology and genetic variation on splicing. It will be useful in
annotating the results of genetic and epigenomic studies of neuro-
logic and psychiatric diseases; however, it has an immediate influ-
ence on the identification of the functional consequences of several
Alzheimer’s disease susceptibility alleles, helps to expand the list of
loci involved in Alzheimer’s disease, and implicates the protein-deg-
radation machinery in the pathology of Alzheimer’s disease.

URLs. ROS/MAP sQTL browser, https://rajlab.shinyapps.io/
sQTLviz ROSMAP/;  LeafCutter,  https://github.com/davida-
knowles/leafcutter; xQTL Browser, http://mostafavilab.stat.ubc.
ca/xQTLServe; FUSION, http://gusevlab.org/projects/fusion/;
MISO, http://genes.mit.edu/burgelab/miso/; SpliceAid-F, http://
srv00.recas.ba.infn.it/SpliceAidF/; Roadmap Epigenomics Project,
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.
html; GREGOR, http://genome.sph.umich.edu/wiki/GREGOR;
GARFIELD, http://www.ebi.ac.uk/birney-srv/GARFIELD; GeNets,
https://apps.broadinstitute.org/genets; ~ Michigan  Imputation
Server, https://imputationserver.sph.umich.edu/index.html; The
RUSH Alzheimers Disease Research Center Research Resource
Sharing Hub, https://www.radc.rush.edu; AMP-AD Synapse Portal,
https://www.synapse.org/#!Synapse:syn2580853/wiki/409844;
CommonMind Consortium Knowledge Portal, https://www.syn-
apse.org/#!Synapse:syn2759792/wiki/69613; IGAP GWAS sum-
mary statistics, http://web.pasteur-lille.fr/en/recherche/u744/igap/
igap_download.php; UK Biobank summary statistics, http://gwas-
browser.nygenome.org/downloads/gwas-browser/.
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ANALYSIS

Methods

Study cohorts. ROS. From January 1994 to June 2010, 1,148 individuals agreed

to annual detailed clinical evaluation and brain donation at the time of death.

Of these, 1,139 have completed their baseline clinical evaluation: 68.9% were
women; 88.0% were white, non-Hispanic; their mean age was 75.6 years; and mean
education was 18.1 years. There were 287 cases of incident dementia and 273 cases
of incident Alzheimer’s disease with or without a coexisting condition. Details of
the clinical and pathologic methods have been previously reported'’.

MAP From October 1997 to June 2010, 1,403 individuals agreed to annual detailed
clinical evaluation and donation of the brain, spinal cord, nerve and muscle at
the time of death. Of these, 1,372 completed their baseline clinical evaluation:
72.7% were women; 86.9% were white, non-Hispanic; their mean age was 80.0
years; and mean education was 14.3 years with 34.0% with 12 or fewer years of
education. There were 250 cases of incident dementia and 238 cases of incident
Alzheimer’s disease with or without a coexisting condition. Details of the clinical
and pathologic methods have been previously reported”'. To avoid population
stratification artifacts in the genetic analyses, the study was limited to non-
Hispanic whites.

See Supplementary Note for the details of CMC and MSBB datasets.

Data acquisition, quality control and normalization. Genotyping. DNA from
ROS and MAP subjects was extracted from whole blood, lymphocytes or frozen
post-mortem brain tissue and genotyped on the Affymetrix GeneChip 6.0 platform
at the Broad Institute’s Center for Genotyping. Only self-declared non-Hispanic
Caucasians were genotyped to minimize population heterogeneity. PLINK
software*” was used to implement our quality-control pipeline. We applied
standard quality-control measures for subjects (genotype success rate

>95%, genotype-derived gender concordant with reported gender, excess inter/
intraheterozygosity) and for SNPs (Hardy-Weinberg equilibrium P> 0.001; minor
allele frequency> 0.01, genotype call rate >0.95; misshap test >1x 10~°) to these
data. Subsequently, EEGENSTRAT® was used to identify and remove population
outliers using default parameters. Imputation was performed using Michigan
Imputation Server with Minimac3** using Haplotype Reference Consortium (HRC
version r1.1, 2016)* panel, which consists of 64,940 haplotypes of predominantly
European ancestry. Imputation filtering of 7*> 0.3 was used for quality control.
After quality control, 450 individuals and 8,383,662 genotyped or imputed markers
were used for sQTL analysis.

RNA-seq data. RNA was sequenced from the gray matter of the DLPFC of 542
samples, corresponding to 540 unique brains. These samples were extracted using
Qiagen’s miRNeasy mini kit and the RNase-free DNase Set. RNA was quantified
using Nanodrop. The quality of RNA was evaluated by the Agilent Bioanalyzer.
All samples were chosen to pass two initial quality filters: RNA integrity (RIN)
score> 5 and quantity threshold of 5 pg (and were selected from a larger set of 724
samples). RNA-seq library preparation was performed using the strand-specific
dUTP method with poly-A selection. Sequencing was performed on the Illumina
HiSeq with 101-bp paired-end reads and achieved coverage of 150 million reads
of the first 12 samples. These 12 samples served as a deep-coverage reference and
included two males and two females of non-impaired, mild cognitive impaired and
Alzheimer’s cases. The remaining samples were sequenced with target coverage
of 50 million reads; the mean coverage for the samples to pass quality control is
95 million reads (median 90 million reads). The libraries were constructed and
pooled according to the RIN scores such that similar RIN scores would be pooled
together. Varying RIN scores result in a larger spread of insert sizes during library
construction and leads to an uneven coverage distribution throughout the pool.
The RNA-seq data were processed by a parallelized pipeline. This pipeline
includes trimming the beginning and ending bases from each read, identifying
and trimming adapter sequences from reads, detecting and removing rRNA
reads, and aligning reads to the reference genome. Specifically, RNA-seq reads
in FASTQ format were inspected using FASTQC program. Barcode and adapter
contamination, low-quality regions (8 bp at the start and 7bp at the end of
each FASTQ reads) were trimmed using FASTX-toolkit. To remove rRNA
contamination, we aligned trimmed reads to the rRNA reference (rRNA genes
were downloaded from the UCSC genome browser selecting the RepeatMask table)
by BWA, and we then extracted only paired unmapped reads for transcriptome
alignment. STAR (v.2.5)*° was used to align reads to the transcriptome reference,
and RSEM (v.1.3.0)*” was used to estimate expression levels for all transcripts. To
quantify the contribution of experimental and other confounding factors to the
overall expression profiles, we used the COMBAT algorithm™ to account for the
effect of batch and linear regression to remove the effects of RIN, postmortem
interval, sequencing depth, study index (ROS sample or MAP sample), genotyping
principal components, age at death and sex. Finally, only highly expressed genes
were kept (mean expression > 2 log, fragments per kilobase million), resulting in
13,484 expressed genes for eQTL analysis. The details for cis-eQTL analysis have
previously been described”.

Intron usage mapping and quantification. We used LeafCutter” to obtain clusters
of variably spliced introns. LeafCutter enables the identification of splicing events
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without relying on existing annotations, which are typically incomplete, especially
in the setting of large genes or individual- and/or population-specific isoforms.
LeafCutter defines ‘clusters’ of introns that represent alternative splicing choices.
To do this, it first groups together introns that overlap (defined by spliced reads).
For each of these groups, LeafCutter constructs a graph in which nodes are introns
and edges represent overlapping introns. The connected components of this

graph define the intron clusters. Singleton nodes (introns) are discarded. For each
intron cluster, it iteratively (1) removed introns that were supported by fewer than
100 reads or fewer than 5% of the total number of intronic read counts for the
entire cluster, and (2) reclustered introns according to the procedure above. The
intron usage ratio for each cluster was next computed and standardized (across
individuals) and quantile normalized (across sample) as previously described™.
LeafCutter was carefully benchmarked against other methods”, and was able to, for
example, identify as many or more differentially spliced events when compared to
other methods.

Association of intron usage with Alzheimer’s disease and neuropathology
traits. The association analysis with neuropathology traits and intron usage was
performed using a linear model, adjusting for experimental batch, RIN, sex,
age at death and postmortem interval. To test for association with Alzheimer’s
disease, we limited the comparison to those participants with clinical and
pathological diagnosis of Alzheimer’s disease and those who have neither diagnosis
(Supplementary Table 1). We used LeafCutter” to identify intron clusters with at
least one differentially excised intron by jointly modeling intron clusters using a
Dirichlet-multinomial generalized linear model™. To account for neuronal loss
and cell type proportion in each brain sample, we used gene expression level of
cell type-specific genes as an additional covariate. However, these measures did
not affect our association analysis. We report differentially spliced introns at
Bonferroni-corrected P<0.05 to correct for multiple hypothesis testing.

We used variancePartition™ to estimate the proportion of variance explained by
differently excised introns association with Alzheimer’s disease, burden of amyloid,
burden of tangles and neuritic plaques.

sQTL mapping. We used LeafCutter” to obtain the proportion of intron-defining
reads to the total number of reads from the intron cluster it belongs to. This
intron ratio describes how often an intron is used relative to other introns in

the same cluster. We used WASP*’ to remove read-mapping biases caused by
allele-specific reads. This is particularly important when a variant is covered

by reads that also span intron junctions as it can lead to a spurious association
between the variant and intron excision level estimates. We standardized the
intron ratio values across individuals for each intron and quantile normalized
across introns®' and used this as our phenotype matrix. We used linear regression
(as implemented in fastQTL)™ to test for associations between SNP dosages
(MAF >0.01) within 100kb of intron clusters and the rows of our phenotype
matrix that correspond to the intron ratio within each cluster. As covariate, we
used the first three principal components of the genotype matrix to account for
the effect of ancestry plus the first 15 principal components of the phenotype
matrix (PSI) to regress out the effect of known and hidden factors. The

principal components regress out the technical and biological covariates such

as experimental batch, RIN, sex, age at death, and postmortem interval. To
estimate the number of sQTLs at any given FDR, we ran an adaptive permutation
scheme”, which maintains a reasonable computational load by tailoring the
number of permutations to the significance of the association. We computed the
empirical gene-level P value for the most significant QTL for each gene. Finally,
we applied Benjamini-Hochberg corrections to the permutation P values to
extract all significant sQTL pairs with an FDR <0.05.

TWAS. We used RNA-seq data and genotypes from ROS/MAP to impute the cis
genetic component of expression/intron usage’* into a large-scale late-onset
Alzheimer’s disease GWAS of 74,046 individuals from the IGAP'". The complete
TWAS pipeline is implemented in the FUSION suite of tools*. The details steps
implemented in FUSION are as follows. First, we estimated the heritability of
gene expression or intron usage unit and stopped if not significant. We estimated
using a robust version of GCTA-GREML®, which generates heritability estimates
per feature as well as the likelihood ratio test P value. Only features that have a
heritability of Bonferroni-corrected P < 0.05 were retained for TWAS analysis.
Second, the expression or intron usage weights were computed by modeling all
cis-SNPs (+1 Mb from the transcription start site) using best linear unbiased
prediction, or modeling SNPs and effect sizes with Bayesian sparse linear mixed
model, least absolute shrinkage and selection operator, Elastic Net and top
SNPs*”". A cross-validation for each of the desired models were then performed.
Third, a final estimate of weights for each of the desired models was performed and
the results were stored. The imputed unit is treated as a linear model of genotypes
with weights based on the correlation between SNPs and expression in the training
data while accounting for linkage disequilibrium (LD) among SNPs. To account for
multiple hypotheses, we applied an FDR < 0.05 within each expression and splicing
reference panel that was used.

We used the same TWAS pipeline to process the CMC datasets
(see Supplementary Note).
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Joint and conditional analysis. Joint and conditional analysis of TWAS results
was performed using the summary statistic-based method described previously',
which we applied to genes instead of SNPs. We used TWAS statistics from the
main results and a correlation matrix to evaluate the joint or conditional model.
The correlation matrix was estimated by predicting the cis-genetic component of
expression for each TWAS gene and computing Pearson correlations across all
pairs of genes. We used FUSION tool to perform the joint and conditional analysis
and to generate conditional outputs and plots.

Gene expression, DNA methylation, Histone modification QTL mapping. The
details of ROS/MAP gene expression, DNA methylation and histone modification
data are described in the Supplementary Note. The quantitative trait locus (xQTL)
analysis on a multi-omic dataset has been described previously”. The xQTL results

and analysis scripts can be accessed through online portal, xQTL Serve (see URLs).

QTL sharing. We used the Storey’s r, statistics* also described previously®’, QTL
sharing was estimated as the proportion of true associations 7z, among the top SNP
in each QTL in the second QTL.

Enrichment of sQTLs within epigenomic marks and splicing factor binding
sites. We selected a set of 71 human curated RBP splicing regulatory proteins from
the SpliceAid-F database® to analyze the relationship between gene expression
levels of RBP and intron usage patterns across all samples. To test for enrichment
of sQTLs in RBP binding sites, we downloaded human CLIP data in BED format
from CLIPdb**. We used GREGOR* (Genomic Regulatory Elements and Gwas
Overlap algoRithm) to evaluate global enrichment of trait-associated variants in
splicing factor binding sites. GREGOR® evaluates the significance of the observed
overlap (of sQTL and splicing factor binding sites) by estimating the probability
of the observed overlap of the lead sQTL relative to expectation using a set of
matched control variants (random control SNPs are selected across the genome
that match the index SNP for a number of variants in LD, minor allele frequency
and distance to nearest intron). We used Fisher’s exact test in combination with
Benjamini-Hochberg FDR correction for multiple testing.

Enrichment of sQTLs in chromatin states. We downloaded chromatin states
from the Roadmap Epigenomics Project. The 15 chromatin states were generated
from five chromatin marks in DLPFC of a cognitively non-impaired MAP subject
with minimal pathology as part of the Roadmap Epigenomics Consortium®.

A ChromHMM model applicable to brain epigenome was learned by virtually
concatenating consolidated data corresponding to the core set of five chromatin
marks assayed (H3K4me3, H3K4mel, H3K36me3, H3K27me3 and H3K9me3).
BED files were downloaded from Washington University in St. Louis Roadmap
Epigenome Browser. To test for enrichment for sQTLs among the 15 chromatin
states, we used GREGOR™ to evaluate global enrichment of trait-associated
variants in splicing factor binding sites.

GWAS enrichment analyses. We used GARFIELD (see URLS) to test for
enrichment of IGAP Alzheimer’s disease GWAS SNPs among sQTLs and other
publicly available QTL datasets. GARFIELD performs greedy pruning of GWAS
SNPs (LD 2> 0.1) and then annotates them based on functional information
overlap. It quantifies fold enrichment at GWAS P < 10~° significant cut-off and
assesses them by permutation testing, while matching for minor allele frequency,
distance to nearest transcription start site and a number of LD proxies (r*>0.8).

Q-Q plots show quantiles of one dataset against quantiles of a second dataset
and are commonly used in GWAS to show a departure from an expected P-value
distribution. We generated Q-Q plots for LD-pruned GWAS SNPs (PLINK with
the settings ‘- indep- pairwise 100 5 0.8’). We compared the sQTLs overlapping
with LD-pruned GWAS SNPs and compared the distribution to a random set of
SNPs with similar MAF.

GWAS datasets. We performed the TWAS using GWAS summary statistics from:
(1) Alzheimer’s disease GWAS from the IGAP (stage 1 data)'’; (2) Alzheimer’s
disease genome-wide association study by proxy (GWAXx) in 116,196 individuals
from the UKBB”.

PPI network and pathway analysis. We constructed a PPI network using GeNets*
to determine whether the Alzheimer’s disease TWAS genes significantly interact
with each other and with known Alzheimer’s disease-associated proteins. GeNets
create networks of connected proteins using evidence of physical interaction

from the InWeb database, which contains 420,000 high-confidence pairwise
interactions involving 12,793 proteins”’. Community structures of the underlying
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genes are displayed in GeNets. These ‘communities’ are also called modules or
clusters. This feature highlights genes that are more connected to one another than
they are to other genes in other modules. To assess the statistical significance of
PPI networks, GeNets applies a within-degree node-label permutation strategy

to build random networks that mimic the structure of the original network and
evaluates network connectivity parameters on these random networks to generate
empirical distributions for comparison to the original network. In addition to PPI
network analysis, GeNets allows for gene set enrichment analysis on genes within
the PPI network. We used Molecular Signatures Database Curated Gene Sets,
curated from various sources such as online pathway databases, the biomedical
literature and knowledge of domain experts and Canonical Pathways, curated from
pathway databases such the Kyoto Encyclopedia of Genes and Genomes, BioCarta,
and Reactome to test for gene set enrichment within the PPI network. Then a
hypergeometric testing is applied to get P value for gene set enrichment. We used
Bonferroni-corrected P <0.05 to correct for multiple hypothesis testing.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The ROS/MAP sQTL visualization (Shiny App) browser is available at https://
rajlab.shinyapps.io/sQTLviz_ ROSMAP/. The ROS/MAP data are available at
the RADC Research Resource Sharing Hub at http://www.radc.rush.edu/. The
ROS/MAP and MSBB mapped RNA-seq data that support the findings of this
study are available from the AMP-AD Knowledge Portal (https://www.synapse.
org/#!Synapse:syn2580853) upon authentication by the Consortium. The CMC
data are available from the CMC Knowledge Portal (https://www.synapse.
org/#!Synapse:syn4923029).
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» Experimental design

1. Sample size

Describe how sample size was determined. No sample-size calculation was performed before the study. The number of
samples (n=450) was determined by the availability of high-quality brain specimens
of ROS/MAP study participants. The goal of this study is to identify the impact of
common (minor allele frequency > 5%) genetic variants on local splicing events.
Assuming an additive model of effects on gene expression levels, we estimate that
the sample size of 450 controls provides excellent power to detect modest genetic
effects at genome-wide level of significance 5 x 10-8 (91% power to detect effects
explaining 10% of expression variability and 23% power to detect effects explaining
5% of variability). Sample size of hundreds (usually 200-400) is typical for a QTL
studies. Therefore, we believe that the sample size of 450 is sufficient to detect
significant associations. Finally, we also note that this is one of the largest brain
transcriptome data available.

2. Data exclusions

Describe any data exclusions. In total, 92 out of 542 total samples were excluded due to insufficient RNA-seq
quality or they did not have available genotyping data. All quality measures are
given in Online Methods and Supplementary Notes. The QC process was
independent of the samples' clinical or pathological characteristics.

3. Replication
Describe whether the experimental findings were We have made every effort to replicate/validate our findings in two independent
reliably reproduced. RNA-sequencing datasets from the Commonmind Consortium (CMC) (Fromer et

al. 2016 Nature Neuroscience) and from Mount Sinai Brain Bank (MSBB)
(https://www.synapse.org/#!Synapse:syn2580853). This replication effort is rather
unusual for a genetical genomics study. The following validation/replication
analyses were carried out:

-MSBB RNA-seq dataset (n=301) was used to replicate aberrant splicing alterations
in AD brains. We used MSBB to perform independent replication of AD-specific
alternative splicing events because the RNA-seq dataset is from an aging
Alzheimer’s disease cohort.

-To further validate and explore the mechanism of aberrant splicing alterations in
AD brains, we analyzed RNA-Seq data derived from control iPSC- derived neurons
(iN) and iN overexpressing Tau.

-CommonMind Consortium RNA-seq data (n=537) from the dorsolateral prefrontal
cortex (DLFPC) was used to replicate the splicing QTLs discovered in ROS/MAP.

-To replicate the transcriptome-wide association study results (built using ROS/
MAP data as a reference panel), we assessed whether using the expression
imputation model built using the CMC dataset that was deployed in AD GWAS
yields significant results.

-The UK BioBank (UKBB) AD GWAS by proxy data was used to replicate the
International Genomics of Alzheimer's Project (IGAP) AD TWAS results.
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Randomization

Describe how samples/organisms/participants were No allocation into groups was performed. Participants of the ROS and MAP studies

allocated into experimental groups. were not cognitively impaired at enrollment. After death, pathological assessment
was performed to measure tau, tangles, and amyloid-beta burden. Subsequently,
brain samples were sent to RNA-sequencing in an arbitrary order.

Blinding
Describe whether the investigators were blinded to Individuals generating the brain-derived RNA- sequence data were blinded to the
group allocation during data collection and/or analysis. outcome measures.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

|X| A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

|X| A statement indicating how many times each experiment was replicated

|X| The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

|X| A description of any assumptions or corrections, such as an adjustment for multiple comparisons
|X| The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted
|X| A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

|X| Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

» Software

Policy information about availability of computer code

7. Software
Describe the software used to analyze the data in this Calling local splicing events or intronic excision: LeafCutter, http://
study. davidaknowles.github.io/leafcutter/index.html

RNA-seq aligner: STAR v2.5, https://github.com/alexdobin/STAR

Quantifying gene expression: RSEM v1.3.0, https://github.com/deweylab/RSEM
Mapping QTL: fastQTL, http://fastqtl.sourceforge.net/

Allele-specific read mapping: WASP, https://github.com/bmvdgeijn/WASP
Removing batch effects from RNA-seq data: COMBAT, https://www.bu.edu/jlab/
wp-assets/ComBat/Abstract.html

Genotype, genetic association and QC: PLINK, https://www.cog-genomics.org/
plink2

Population stratification: EIGENSTRAT, https://github.com/DReichLab/EIG/tree/
master/EIGENSTRAT

Imputing GWAS data: Michigan Imputation Server, https://
imputationserver.sph.umich.edu/index.html

Transcriptome-wide associaiton study,Performing the expression imputation using
several learning models, joint/conditional analysis: FUSION, http://gusevlab.org/
projects/fusion/

Heritability estimates, GCTA- GREML, http://cnsgenomics.com/software/gcta/
#Overview

Quantitates the expression level of alternatively spliced genes: MISO, http://
genes.mit.edu/burgelab/miso/;

Evaluate enrichment of trait-associated variants in annotated features: GREGOR,
http://genome.sph.umich.edu/wiki/GREGOR;

GWAS analysis of regulatory or functional information enrichment with LD
correction: GARFIELD, http://www.ebi.ac.uk/birney-srv/GARFIELD;

Figures were generated using FUSION tools, R and ggplot2 2.2.1.
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All software is freely available.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

» Materials and reagents

Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of ~ No unique materials were used. Additional human samples are available from the
unique materials or if these materials are only available individuals in our study through the RUSH University Alzheimer Disease Center.
for distribution by a for-profit company.

9. Antibodies

Describe the antibodies used and how they were validated = N/A.
for use in the system under study (i.e. assay and species).

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. N/A.
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b. Describe the method of cell line authentication used.  N/A.

c. Report whether the cell lines were tested for N/A.
mycoplasma contamination.

d. If any of the cell lines used are listed in the database N/A.
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived N/A.
materials used in the study.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population The mean age of death of the 450 subjects with RNA-seq profiles was 88.54 years.

characteristics of the human research participants. 281 of the 450 subjects were female, and 268 subjects were diagnosed with AD at
pathological assessment. All analyses were adjusted for age and gender and other
technical covariates. The details of covariates are in Supplementary Table 1. The
ROS and MAP studies are described in detail at the RADC Research Resource
Sharing Hub: http://www.radc.rush.edu/




