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ABSTRACT
In a whole exome sequencing study of multiplex Alzheimer’s disease (AD) families we
investigated three neuronal ceroid lipofuscinosis genes that have been linked to retromer,
an intracellular trafficking pathway associated with AD-- Ceroid lipofuscinosis 3 (CLN3),
Ceroid lipofuscinosis 5 (CLN5) and cathepsin D (CTSD). We identified a missense variant
in CLN5 c.A959G (p.Asn320Ser) that segregated with AD. We find that this variant
causes glycosylation defects in the expressed protein, which causes it to be retained in
the endoplasmic reticulum with reduced delivery to the endolysosomal compartment,
CLN5’s normal cellular location. The AD-associated CLN5 variant is shown here to
reduce the normal processing of Cathepsin D and to decrease levels of full-length APP,

suggestive of a defect in retromer-dependent trafficking.
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INTRODUCTION

Lysosomal storage diseases (LSDs) are a group of inherited disorders that typically cause
neurodegeneration early in life(1). Recent observations have established that genetic
variants that cause one type of LSD, Gaucher’'s disease, can act as a risk factor for
developing a late-onset neurodegenerative disease, Parkinson’s disease(2). This
observation suggests that genes that cause other LSDs might act as risk factors for other
late-onset neurodegenerative disorders, notably Alzheimer’'s disease (AD). While over
the past decade over 25 genes increasing risk of AD have been identified, a large part of
the genetic contribution to AD remains to be clarified (3).

With this question in mind, we focused on a select group of genes that cause
another LSD, Neuronal ceroid lipofuscinosis (NCL), because they have been directly or
indirectly associated with retromer trafficking(4, 5). Retromer is a multi-modular protein
assembly that has been linked to the pathogenesis of late-onset AD(6, 7), and is now
considered the ‘master conductor’ of endosomal sorting and trafficking(8). Among the
group of NCL genes we focused on these three: Ceroid Lipofuscinosis 3 (CLN3) whose
expressed protein functions in trafficking the mannose-6-phosphate receptor (M6PR), a
key cargo of retromer(9); CLN5 whose expressed protein is located at endosomal
membranes and has been shown to function in the recruitment of retromer to endosomal
membranes(4); and CTSD, whose expressed protein, Cathepsin D, requires the normal
retromer-dependent trafficking of M6PR to deliver pro-Cathepsin D to the endosome,
during which it is processed to its mature form Cathepsin D.

To explore whether genetic variation in any of these three genes increase risk of
AD, we capitalized on data from a whole exome sequencing study of multiplex
Alzheimer’s disease (AD) families. To validate variant(s) identified in these analyses, we

then turned to cell culture to determine whether they have deleterious effects on normal
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function. Finally, because all three genes converge on Cathepsin D, we tested whether
the abnormal function caused by identified variant(s) would affect the normal processing

of this protein.

MATERIALS AND METHODS

DNA isolation and sequencing. High molecular weight DNA was isolated from either
fresh or frozen blood stored at -80°C using the Gentra Puregene and FlexiGene kits

(Qiagen). When high quality DNA from blood was unavailable (13 probands), DNA was
isolated from lymphocyte cell lines. TruSeq DNA Preparation and Exome Enrichment
kits (lllumina, San Diego, CA) were used to prepare indexed genomic DNA (gDNA)
libraries and isolate exonic regions for high throughput sequencing. Multiplexed DNA
samples were sequenced in batches of up to 12 samples on lllumina’s Genome

Analyzer lIx, HiSeq 2000, and MiSeq platforms (http://www.illumina.com). Paired-end

reads were performed over 82-307 sequencing cycles, yielding high coverage at an
average depth of >60x per sample and interval region captured.

Downstream bioinformatics analysis of sequence data. Using the Burrows Wheeler
Aligner (10) the reads obtained from the pooled sequencing were aligned to the human

reference genome build 37 (http://bio-bwa.sourceforge.net/). Quality control of the

sequencing data was done using established pipelines, including base alignment quality
calibration and refinement of local alignment around putative indels using the Genome
Analysis Toolkit (GATK)(11). Variants were called and recalibrated using multi-sample
calling with GATK’s UnifiedGenotyper and VariantRecalibrator modules. Reliably called
variants were annotated by ANNOVAR(12) including in-silico functional prediction using

POLYPHEN(13) and extent of cross-species conservation using PHYLOP(14).
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Statistical analyses of sequence data. We tested segregation and AD association of
individual single nucleotide variants (SNVs) in the sequenced samples. To validate SNVs
prioritized from these analyses, we genotyped them in all family members of the families
in which they were discovered, and a set of 438 unrelated, unaffected population controls
of similar ancestry (68.1% women, mean age at examination =82.0+ 7.3, APOE €4 allele
frequency = 9.8%) using the Sequenom MassARRAY platform. We compared their allele
frequencies in affected individuals with unaffected samples from this follow-up genotyping
using Fisher’s exact test. The 438 unaffected, unrelated controls were determined to be
of the same ethnic background as the familial cases using methods described
previously(15). We also compared the allele frequencies in affected individuals with the
publicly available ExAC data. Because of the lack of an optimal ethnically matched control
data set for Caribbean Hispanics, we used the ExXAC Latino cohort for an estimate of the
population allele frequencies of identified variants.

Design and preparation of the CLN5 constructs. Plasmids expressing the WT and
¢.A959G (N320S) CLN5 proteins (human) tagged with flag at c-terminal were designed
using Thermofisher's GeneArt portal. A flexible poly-glycine linker (6xG) was inserted
between the protein and the tag. mRNA sequence for CLN5 was acquired from the
National Center for Biotechnology Information (NCBI). The constructs were then
subcloned into pcDNA 3.1 (+) Hygro vectors with CMV promotor.

Cell culture. Hela cells were cultured using DMEM + 10% FBS and glutamax, with
penicillin, streptomycin and amphotericin B to prevent microbial contamination. Mouse
neuroblastoma (N2a) cells were cultured in 50% DMEM (high glucose) & 50% Opti-MEM
+ 10% FBS and Glutamine (2mM) with penicillin and streptomycin to prevent microbial
contamination. Primary mouse cortical neuron cultures were performed as described
previously (16). Primary microglia were cultured as described previously with slight

modifications (17). Briefly brain homogenate from day 1 pups were plated onto poly d
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ornithine coated flasks in DMEM/F12 + 10% FBS and glutamax containing macrophage
colony stimulating factor (MCSF). At day 7 microglia were dislodged from the bottom of
the flask by tapping the flask gently. Careful tapping results in floating of microglia prior
to other cells / debris. Medium containing microglia was passed through cell strainer to
remove remaining debris. Suspension was spun down at 500g and the pellet was re-
suspended in fresh medium and plated in 6 well plates and allowed to grow and stabilize
for 7 days prior to harvesting.

Transfection of cells with CLN5 WT and N320S variant and biochemistry. WT and
N320S CLN5 expressing plasmids were transfected into HeLa and N2a cells using
lipofectamine. Cells were harvested 24 hours after transfection, culture medium was also
collected at the same time. Lysates from the samples were run on NUPAGE® Bis-Tris 4-
12% gels, transferred onto nitrocellulose membranes using iblot and were probed with
antibodies against CLN5 (Abcam ab170899 1:500), actin (Novus NB600-535 1:2000),
albumin (abcam ab3781 1:2000), Iba1 (Novus NB100-1028 1:500) Amyloid Precursor
Protein (Abcam ab32136 1:10,000) and cathepsin D (Abcam ab75852 1:500). For the
deglycosylation experiments Endo H kit from New England Biolabs (P0702L) was used

with the recommended protocol (https://www.neb.com/protocols/2012/10/18/endo-hf-

protocol), briefly lysates were denatured in glycoprotein denaturing buffer at 100°C for 10
min, then incubated in glycobuffer3 and Endo H at 37°C for 1 hour. To generate stable
cell lines some wells of the HelLa cells expressing the CLN5 WT and N320S variant
plasmids were selected with hygromycin B for ~14 days. The surviving stably transfected
cells were plated in 6 well plates, and were harvested after 48 hours for biochemistry.

Immunocytochemistry. HelLa cells were transfected with CLN5 plasmids in a 24 well
plate (with coverslips) using lipofectamine 2000. Twenty-four hours after transfection cells
were fixed using 4% paraformaldehyde for 10 min and permeabilized using digitonin

(0.01%) for 10 min. To block nonspecific staining cells were incubated in 5% donkey
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serum overnight. Cells were probed for CLN5 (Abcam ab170899 1:250, Sigma
SAB1412697 1:200), LAMP1 (R&D AF4800 1:500), Rab7 (SC-376362 1:50), and
calnexin (Genescript A01240 1:500) primary antibodies prepared in 1% donkey serum.
Secondary antibodies (Life technologies) conjugated with alexa fluor dyes were used.
Images were taken using Zeiss LSM 700 META confocal microscope equipped with a
63x Plan-Apochromat objective andHeNE1, HeNe2 and argon lasers. Colocalization

analysis was performed using ImagedJ’s JACoB plugin.

RESULTS
Whole exome sequencing of multiplex AD families

Whole exome sequencing was performed in 31 Caribbean Hispanic families (98 affected
and 12 unaffected relatives) from the Estudio Familiar de Influencia Genetica en
Alzheimer (EFIGA). Families selected for sequencing had at least four affected individuals
meeting NINCDS-ADRDA(18) standard criteria for AD and were free of known mutations
in APP, PSEN1, PSEN2, GRN and MAPT. Analysis of the sequence data of the CLN5
gene identified a rare missense variant (rs199609750; c.A959G, population frequency:
7.418e-05) that segregated with AD status in one multiplex family, present in two affected
but no unaffected individuals (frequency in affected: 2.0%, frequency in unaffected: 0%).
This variant was also significantly associated with AD when genotyped in all family
members and compared to 438 internally genotyped controls of similar ancestry in which
the mutant allele was entirely absent (p<0.0001), or when compared to population Latino
controls in the ExaC database (allele frequency=0.0006; p<0.0001). No variants in CLN3

or CTSD were segregating with AD status in these families.

Altered post-translational processing in the CLN5 c.A959G (N320S) variant
To validate possible biological effects of the CLN5 ¢.A959G (N320S, rs199609750) AD
variant, we began by expressing WT and ¢c.A959G (N320S) CLN5 in HelLa cells. The WT
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CLNS5 displayed an expected molecular weight of 60kD, however we observed a slight
shift of ~2.5kD in the c.A959G (N320S) variant (Fig. 1A). This shift indicates the possibility
of an aberrant post-translational modification, as c.A959G is a missense mutation and

should not result in any form of premature truncation of the protein.

CLN5 has 8 asparagine (N) glycosylation sites and all of these sites are
glycosylated in WT human CLNS5(19). The c.A959G missense mutation results in the
replacement of the amino acid at position 320, an asparagine with serine (N320S) where
asparagine 320 is one of the glycosylation sites (Fig. 2). Moharir et al. (2013) also
indicated that lack of N-glycosylation on certain sites in CLN5, including N320, impairs
CLNS5 trafficking and function(19). Based on site-directed mutagenesis of individual
asparagine residues to glutamine on each of the N-glycosylation consensus sites followed
by colocalization studies, they categorized the mutants into three groups: 1. Folding of
the protein without which CLNS5 is retained in the ER (N179Q, N252Q, N304Q, N320Q),
2. glycolysation involved in endosome/lysosome trafficking without which CLN5 is
accumulated in the Golgi (N401Q) and 3.) glycolysation involved in lysosomal function
(N192Q, N227Q)), suggesting that there are functional differences in various N-
glycosylation sites of CLN5 which differentially affect folding, trafficking, and lysosomal
function of CLN5. We hypothesized therefore that this novel amino acid substitution
(N320S) should also interfere with N-glycosylation at this particular site. To confirm this
glycosylation deficit, sugar moieties were stripped away from these proteins before
subjecting them to gel electrophoresis. After the deglycosylation reaction both proteins,
the WT and the N320S mutant, resolved at a location close to 37kD and the difference in
molecular weights between them disappeared. We also noticed a 15% increase in the
levels of intracellular CLN5 N320S variant (Fig- 1B,C). This increase in levels can be

explained by the glycosylation defect, as it can lead to abnormal folding of CLNS resulting
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in endoplasmic reticulum (ER) entrapment (19, 20). If so, and since CLN5 can be secreted
into the extracellular space (19, 21) , ER retention of the CLN5 N320S variant should be
associated with its diminished secretion. Accordingly, we analyzed CLNS levels in cell
culture medium, and confirming the hypothesis we find a significant decrease in the CLN5
N320S variant released to the media compared to WT CLN5 (Fig. 1C). These
experiments establish that the novel AD-linked CLN5 variant is aberrantly glycosylated
and provide biochemical evidence that suggests that the variant might be trapped in the

ER.

Impaired cellular localization and retromer-mediated trafficking in the CLN5
N320S variant

We then turned to confocal microscopy to further confirm this interpretation by comparing
the intracellular localization of WT CLNS5 to the AD-associated N320S variant. WT CLNS
is proteolytically cleaved and glycosylated prior to its transport to the endosomal-
lysosomal compartments(21-23). Confirming the hypothesis, compared to WT CLNS5, the
AD-associated N320S variant showed increased co-localization with ER markers, but
decreased co-localization with markers of the endosomes and lysosomes (Fig. 3 and 4;
Supplemental Material).

Upon further biochemical analysis of HeLa cells, transiently expressing the WT
and the N320S CLNS5, we observed a small but consistent decrease in intracellular full-
length APP (~10% decrease, p=0.01), when N320S CLN5 was expressed. To confirm
this finding we repeated these experiments in mouse N2a cells and found a similar
decrease in full-length APP in these neuroblastoma cells (Fig. 5A-B).

The glycosylation deficiency and ER retention of CLN5 N320S variant suggests
that it is a loss-of-function mutation. One function assigned to CLNS5 is its role in retromer

trafficking—a pathway firmly linked to AD etiology by animal, cell biology and genetic
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studies—based on a study that found that CLN5 depleted cells show evidence of retromer
dysfunction(4). The study relied on previous observations establishing that a reliable
cellular readout of retromer dysfunction is transport defects of Cathepsin D to the
endosomal-lysosomal compartments, a secondary consequence of the dependence of
retromer for mannose-6-phosphate receptor recycling. During the transport to the
endosomal-lysosomal compartments pro-cathepsin D is processed into its mature
form(24), and retromer dysfunction is therefore associated with a relative increase in pro-
cathepsin D compared to mature cathepsin D(25). We relied on this cellular readout to
determine whether the AD-associated CLN5 N320S mutant causes a partial loss of CLN5
function. We measured pro-cathepsin D and mature cathepsin D in HelLa cell lines stably
expressing WT and N320S CLN5 constructs. Compared to cell lines expressing WT
CLN5, we observed a significant increase in pro-cathepsin D levels in the cell lines

expressing CLNS N320S mutant (Fig. 5C-D).

DISCUSSION

Numerous studies focusing on Neuronal Ceroid Lipofuscinosis (NCL) have identified
many NCL related mutations(26). Our findings identify, we believe for the first time, a
variant in one of these genes that is linked to late-onset AD. While CLNS’s function is not
fully understood, this transmembrane protein is normally located at endosomal
membranes(19), and one study suggested that it plays a role in retromer trafficking(4).
Retromer is a multi-modular protein assembly that is now considered a ‘master
conductor’(8) of endosomal sorting and trafficking. Each retromer module is made up of
a group of proteins that serves a dedicated role, and the modules work together in support
of retromer trafficking function(6). One key module is the ‘membrane-recruiting’ module,
which functions in recruiting retromer’s ‘cargo recognition’ module to the membrane of
endosomes. The complete list of proteins that are part of the membrane-recruiting

module remains unknown, but a previous study has provided strong evidence that CLN5,
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which normally resides in the endosome, functions in this module(4). This observation
prompted us to include CLNS5 in our genetic analysis.

In a whole exome sequencing study we identified the missense N320S
(p-Asn320Ser) variant in CLN5 to segregate with AD status in families multiply affected
by the disease. This variant was also significantly associated with AD when genotyped in
all family members and compared to 438 internally genotyped controls of similar ancestry
in which the mutant allele was entirely absent, or when compared to population Latino
controls in the ExaC database. Using a combination of molecular biology, biochemistry,
and immunofluorescence experiments we further validated this variant, functionally
demonstrating that it is glycosylation deficient, which causes the expressed protein to be
partially trapped in the ER and reduces its normal delivery to the endolysosomal system.
Guided by a previous study(4) that showed that CLN5 deficiency affects retromer’s
function, we demonstrate that an effective deficiency in endosomal CLN5 caused by the
missense variant results in a shift in the relative levels of pro-cathepsin D, an established
phenotype of retromer dysfunction (24, 25, 27, 28), and a reduction in full-length APP.
Genomic and cell biological findings have linked retromer dysfunction to AD
pathogenesis(6). More than simply identifying a CLN5 variant genetically linked to AD
and validating that it causes a loss-of-function, our results suggest that it converges onto
established pathophysiological mechanisms of disease.

We postulate that the identified N320S missense mutant might mediate its AD-
associated toxicity by affecting retromer function in microglia. CLN5 is highly expressed
in the brain and within the brain CLNS5 is heavily enriched in microglia (Fig. 6) (29, 30), a
cell type linked to AD. Microglia are activated upon tissue damage and are critical for
brain homeostasis through clearance of cellular debris. The identification of CLN5 as a
microglial gene associated with AD is in line with the implication of the microglial gene

TREM2 (encoding a phagocytic receptor) as an AD susceptibility gene(31). Notably,
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retromer deficiency has been found in microglia of AD brains(32), but the mechanisms
underlying this deficiency are still unclear. Thus, besides providing additional evidence
for the role and molecular mechanisms of retromer dysfunction in AD, and while the
missense N320S (p.Asn320Ser) variant should be further validated in additional
independent AD datasets and the CLN5 gene should be further scrutinized in various
ethnic groups for additional potential disease-associated variants, our findings provide
critical support for the link between retromer, microglia and AD. Future studies relying on
genetically engineered mice expressing the CLN5 mutation are required to better
establish the functional consequence of this mutation on the brain and its contribution to
various AD-related pathologies, including the potential effect on APP processing

suggested by this study.
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FIGURE LEGENDS
Fig 1. Glycosylation deficits in AD variant CLN5 N320S. CLN5 WT and N320S AD variant

plasmids were transfected into HelLa cells. After 24 hours the cells were lysed and probed for
CLNS5. (A) CLN5 migrates to ~60 KD with a difference of approximately 2.5 KD between WT
and AD variants, however, when sugar moieties were removed using the enzyme
endoglycosidase H, CLN5 resolved to a lower location on the gel at ~37 KD and the
molecular weight difference disappeared. (B) The relative level of CLN5 inside the cell was
compared to its level in the medium after 24 hours of transfection. WT CLN5 band was
observed at ~60KD in both intra & extracellular compartments. (C) Quantification showed a
significant increase and decrease in intracellular and extracellular CLN5(N320S) variant
respectively. Here and in figures below, asterisks denote * = p<0.05, ** = p<0.01, *** =
p<0.001, and **** = p<0.0001.

Fig 2. Sequence alignment of CLN5 (performed using Clustal Omega
(http://www.ebi.ac.uk/Tools/msa/clustalo/)). The red box indicates the N-glycosylation site
corresponding to human N320 which is conserved among different species and at which the
identified variant rs199609750 (c.A959G) exerts its effect. The green boxes indicate the six
additional N-glycosylation sites conserved among different species. The blue boxes indicate
the N-glycosylation site corresponding to human N401, which is not conserved in rodents.
Sequences used in this alignment: H. sapiens (NP_006484.1), Bos Taurus (ABD83352.1),
Canis lupus familiaris (NP_001011556.1), Mus musculus (NP_001028414.1).

Fig 3. The AD variant CLN5 N320S is reduced in the endolysosomal system. Hela cells
grown on coverslips were transfected with CLN5 WT and N320S variant plasmids. Cells were
fixed with PFA, and stained for CLN5 and LAMP1. (A and B) Co-localization of WT and N320S
CLN5 with LAMP1. WT CLNS5 staining is more punctate compared to N320S and has a higher
colocalization with the lysosomal marker LAMP1. (C) Analysis from 3 independent
immunofluorescence experiments showing reduced co-localization of N320S CLN5 with
LAMP1 (total no of cells analyzed = 75). (D, E and F) CLNS co-localization with late endosomal
marker RAB7 also followed a pattern similar to LAMP1 colocalization (total no of cells analyzed
= 27). For each experiment, the image/cell showing the Pearson correlation value closest to
the mean was selected as representative image. * = p<0.05, ** = p<0.01, *** = p<0.001, and
**** = p<0.0001.
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Fig 4. Impaired intracellular trafficking in CLN5 N320S cells. (A and B) Co-localization of
WT and N320S CLN5 with ER marker calnexin. (C) Analysis from 3 independent
immunofluorescence experiments showing increased co-localization of N320S CLN5 with
ER. (total no of cells analyzed = 189). The image/cell showing the Pearson correlation value
closest to the mean was selected as representative image. * = p<0.05, ** = p<0.01, *** =
p<0.001, and **** = p<0.0001.

Fig. 5. Reduction of full-length APP and effect on Cathepsin D processing. HelLa and
N2a cells were transfected with CLN5 WT and N320S variant plasmids. After 24 hours, the
cells were lysed and probed for full-length APP. (A & B) Full-length APP levels were
significantly reduced in CLN5 N320S expressing HeLa and N2a cells. (C) Some wells of the
Hela cells expressing the CLN5 WT and N320S variant plasmids were selected with
hygromycin to generate stable cell lines. Stable cell lines were plated in 6 well plates, and
after 48 hours the cells were lysed and probed for cathepsin D. (D) Quantification revealed a

significant increase in the ratio of pro versus mature cathepsin D. ** = p<0.01.

Fig 6. CLN5 Expression in different brain cells. (A) CLNS RNA expression measured in
Fragments per kilobase of transcript sequence per million mapped fragments (FPKM),
reproduced from Ben Barres / Jia Wu database (30) (B) Lysates from primary mouse
neurons and primary mouse microglia were probed with anti-CLN5 antibody and anti-IBA1
antibody. Protein levels were normalized to total protein by ponceau stain. (B, inset) Primary

microglia at day 7 of culture.
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