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Abstract

Objective

We aimed to whether the abnormally high amyloid-f3 (AB) level in the brain among apparent-
ly healthy elders is related with subtle cognitive deficits and/or accelerated cognitive
decline.

Methods

A total of 116 dementia-free participants (mean age 84.5 years) of the Washington Heights
Inwood Columbia Aging Project completed 18F-Florbetaben PET imaging. Positive or neg-
ative cerebral AB deposition was assessed visually. Quantitative cerebral A burden was
calculated as the standardized uptake value ratio in pre-established regions of interest
using cerebellar cortex as the reference region. Cognition was determined using a neuro-
psychological battery and selected tests scores were combined into four composite scores
(memory, language, executive/speed, and visuospatial) using exploratory factor analysis.
We examined the relationship between cerebral Af level and longitudinal cognition change
up to 20 years before the PET scan using latent growth curve models, controlling for age,
education, ethnicity, and Apolipoprotein E (APOE) genotype.

Results

Positive reading of AB was found in 41 of 116 (35%) individuals. Cognitive scores at scan
time was not related with AB. All cognitive scores declined over time. A positive reading
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(B =-0.034, p =0.02) and higher AB burden in temporal region (B = -0.080, p = 0.02) were
associated with faster decline in executive/speed. Stratified analyses showed that higher
AP deposition was associated with faster longitudinal declines in mean cognition, language,
and executive/speed in African-Americans or in APOE €4 carriers, and with faster memory
decline in APOE ¢4 carriers. The associations remained significant after excluding mild cog-
nitive impairment participants.

Conclusions

High AR deposition in healthy elders was associated with decline in executive/speed in the
decade before neuroimaging, and the association was observed primarily in African-Ameri-
cans and APOE ¢4 carriers. Our results suggest that measuring cerebral AR may give us im-
portant insights into the cognitive profile in the years prior to the scan in cognitively normal
elders.

Introduction

A hallmark of Alzheimer’s disease (AD), the leading cause of dementia in the elderly, is the de-
posit of amyloid-B (AB) in the brain. However, postmortem studies have found approximately
30% of cognitively normal elderly also show AB deposition in the brain [1-3]. Similar to patho-
logical data, a 20%~30% prevalence of A deposition in brain has been seen among cognitively
normal, asymptomatic elderly using in vivo positron emission tomography (PET) imaging of
radioligands that bind to fibrillar AP in amyloid plaques[4-7].

It has been hypothesized that AP deposition in the brain is an early event in the pathogene-
sis of AD [8], and that clinically normal individuals with AB deposits might be in a preclinical,
prodromal stage of AD [9]. Supporting this hypothesis, several prospective studies [10-13]
found that healthy older adults with higher cerebral AP had a faster cognitive decline following
PET imaging than those with lower cerebral A during 18-month follow up. However, other
studies have reported that cognitively healthy older adults with high cerebral A were not dif-
ferent from those with low cerebral A on the rate of cognitive change over 24 months[14,15].
In addition, cross-sectional studies [16] have also yielded inconsistent results, with some stud-
ies finding that A positive healthy individuals have worse cognitive performance[7,17-19]
and others reporting no association [4,6,20-24]. Thus, it remains unclear whether the abnor-
mally high A level in the brain among apparently healthy elderly people indicates an underly-
ing subtle cognitive deficit and/or accelerated cognitive decline.

As currently prospective amyloid PET data do not have long duration of follow-up, examin-
ing cognitive trajectory before PET imaging is a useful way to help understand the implications
of cerebral AP deposition on cognition among non-demented subjects. Several retrospective
longitudinal studies [25-29] have consistently found among apparently normal elders that,
compared to individuals with AP negative or lower levels of A, individuals with positive or
higher levels of AP had faster cognitive decline over a period of time prior to scanning. While
the findings from these retrospective longitudinal studies seem to be quite consistent, most of
the studies included predominantly a single ethnic group of European origin[25-29]. Little is
known about whether cerebral A is associated different patterns of cognitive change over time
among other ethnic groups such as African-Americans. In addition, except for one study[29],
previous studies have primarily included non-demented younger-old participants who were
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65-80 years old[25-28]. Since AD is highly age-related[30], it is also important to know wheth-
er there is similar, or higher, prevalence of cerebral AB deposition in non-demented older-old
individuals and whether such deposition has similar implications regarding the cognitive
change in the preceding years.

In this study, we evaluated the prevalence and level of AB deposition using '*F-Florbetaben
in a multi-ethnic elderly population with an average age of nearly 85 years, and examined
whether individuals with higher brain level of AP deposition had faster rate of cognitive decline
than those with lower levels of brain A deposition in the decade prior to scanning.

Methods
Study Participants

Subjects were selected from those participating in the Washington Heights Inwood Columbia
aging project (WHICAP). The WHICAP participants were identified from a probability sam-
ple of Medicare beneficiaries aged 65 or older, residing in northern Manhattan[31]. The initial
sample for this study included 2,776 participants of the ongoing WHICAP II cohort. Briefly, at
entry, trained examiners obtained each participant’s demographic information, medical and
neurological history, and conducted a standardized physical and neurological examination.
Participants were followed at intervals of approximately 1.5 years, repeating all the evaluations.
Consensus diagnoses were made by a team of neuropsychologists and neurologists based on
standard research criteria[32]. The diagnosis of mild cognitive impairment (MCI) in this co-
hort has been described elsewhere[33] and was based on Petersen [34] criteria.

Since 2004, we systematically collected high-resolution magnetic resonance imaging (MRI)
data on 769 dementia-free WHICAP II participants. Detailed description of the neuroimaging
subsample can be found in our previous report[35]. In 2009, we began to measure brain Af
burden using a PET tracer with the goal of imaging 728 participants who were free of dementia
at their previous visit. The subjects who participated so far in the ongoing PET study (n = 125)
were younger at the time of their first magnetic resonance imaging (MRI) scan (mean age 79.2
vs. 80.3 years, p = 0.01), had more years of education (12.4 vs. 10.4 years, p = 0.0001), and were
less likely to be Hispanics (21% vs 39%; p<<0.0001) than those without PET scans (n = 603).
Those with and without PET scan were not different in terms of their gender, apolipoprotein
€4 (APOE) status, or comorbidities (hypertension, diabetes, or heart disease). A total of 9 par-
ticipants who were diagnosed with dementia around the time of the PET imaging were further
excluded from the analysis. Thus, the current analysis included 116 dementia-free participants.
The subjects had been followed up for an average of 11.8 years (range 3.2 to 20.4 years) with
5.68 visits (2 to 11 visits) prior to the PET scan.

The Columbia University Institutional Review Board has reviewed and approved this proj-
ect. All individuals provided written informed consent.

Cognitive evaluation

Cognition was determined using a neuropsychological battery [36] which was administered ei-
ther in English or Spanish at baseline and each follow-up visit. Selected neuropsychological
tests scores were combined into four composite scores (memory, language, executive/speed,
and visuospatial) based on an exploratory factor analysis using principal axis factoring and
oblique rotation[36]. Memory was assessed with the Selective Reminding Test [37], including
total recall, delayed recall, and delayed recognition, and with recognition from the Benton Vi-
sual Retention Test[38]. The language domain included measures of naming, letter fluency,
category fluency[39], verbal abstract reasoning[40], and repetition and comprehension[41].
Executive-Speed was assessed with the Color Trails testl and 2 [42], and the times taken to
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complete the tasks were used as the dependent measures. Visuospatial ability was assessed with
the Rosen Drawing Test[43], the BVRT-Matching[38], and the Identities and Oddities subtest
of the Mattis Dementia Rating Scale[44].

Means and standard deviations (SD) were calculated from baseline scores for non-demented
WHICAP subjects controlling for age, race/ethnicity, and years of education. Z-scores for each
of the cognitive measures were calculated and then averaged to create a composite Z-score for
each of the four domains. These factor domain scores were subsequently averaged to produce a
composite “mean cognition” z-score. A higher z-score indicates better cognitive performance.

Image Acquisition, Processing, and Analysis

'®F_Florbetaben. All image processing and analyses were conducted by persons blinded to
the clinical status and cognitive test results of participants. Participant preparation consisted of
intravenous catheterization followed by the bolus injection (over 10-20 sec) of 10 mCi of
'8E-Florbetaben. The PET scans were acquired over a period of 20 minutes in 4x5 minute
frames on an MCT PET/CT scanner (Siemens) in dynamic, 3D imaging mode beginning 50
min after injection of '®F- Florbetaben. Transmission scans were done prior to the scan. An ac-
companying structural CT scan (in-plane resolution = 0.58x0.58 mm, slice thickness = 3mm,
field of view = 29.6x29.6 cm?, number of slices = 75) was also acquired in the same machine at
the same time as the PET scan.

Visual rating. We used a method similar to that of Barthel and colleagues [45] for the vi-
sual classification of brain A deposition. This approach has also been used in the blinded
reads of phase 3 trials [46]. The visual assessment was based on the PET scans alone without
co-registration of MRI brain scans. Florbetaben binding in the specific regions [frontal cortex
(FRC); temporal cortex (TMP); parietal cortex (PAR); cingulate gyrus (CG); and occipital cor-
tex] were rated as visual AR (vAP) positive if the activity was greater than that in the adjacent
white matter, otherwise vA negative. The subject received a positive A reading if any of the
regions was considered as positive. Two readers (S] and MI) worked independently, blind to all
clinical data, cognitive test results, and the quantitative AR measures (see below) of the partici-
pants. After the independent reads, discordant cases (17%) were reviewed by the two readers
together to reach a consensus. The overall Kappa was 0.61, suggesting a fair to good agreement
between the readers[47].

Quantitative image analysis. Each participant received a brain MRI using a 1.5T Philips
Intera scanner (TR/TE 20/2.1 ms/ Flip angle 20 deg/ 256 x 256 matrix / acquisition time 8 09”/
1.3 mm slice thickness/ 105 slices). FreeSurfer (http://surfer.nmr.mgh.harvard.edu/), the MRI
software package comprising a suite of automated tools for segmentation, reconstruction, and
derivation of regional volumes and surface-based rendering, was used for derivation of re-
gions-of-interest (ROI). In total, 95 ROIs masks (35x2 cortical, 23 subcortical, and cerebellar
gray matter and white matter) were extracted from the structural T1 image. Four set of non-
overlapping ROIs were selected: FRC; TMP; PAR; and CG for the statistical analyses.

Dynamic PET frames (4 scans) were aligned to the first frame using rigid-body registration
and a static PET image was obtained by averaging the four registered frames. The static PET
image was registered with the CT to obtain the transformation matrix, and the inverse of this
transformation matrix then transferred the CT image to static PET image space. The CT and
static PET image were merged to generate a composite image in the PET static space. Each in-
dividual’s structural T1 image in FreeSurfer space was also registered to the participant’s
merged image using normalized mutual information and tri-linear interpolation to obtain the
second transformation matrix. A combination of the two transformation matrices was used to
transfer the 4 regional masks and the cerebellar gray matter from FreeSurfer space to static
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PET image space using nearest neighbor interpolation. These 4 regional masks in static PET
space were used to extract the regional PET data. The procedures are summarized in Fig 1.

The standardized uptake value, defined as the decay-corrected brain radioactivity concen-
tration normalized for injected dose and body weight, was calculated at selected regions. The
standardized uptake value was then normalized to cerebellum to derive the standardized up-
take value ratio (SUVR), which was the measurement used in the analyses. Analyses incorpo-
rated both the individual ROIs (including TMP, PAR, CG, and FRC) and an overall mean
value of amyloid burden across the ROIs. The T1 scan was not available for 11 subjects so
SUVR could not be calculated and we included the remaining 105 subjects in the analysis in-
volving SUVR.

Covariates

Information about birthdate, sex, education, and ethnicity was obtained from baseline inter-
views. Age (years) at time of scan was calculated and used as a continuous variable. Education
(years) was used as a continuous variable. Ethnic group was based on self-report using the for-
mat of the 2000 U.S. census. Participants were then assigned to one of four groups: African
American (non-Hispanic), Hispanic, White (non-Hispanic) or Other. Two dummy variables
were created to indicate the three major ethnic groups (White, African-American, and Hispan-
ic, with White as the reference group). Sex was used as a dichotomous variable with male as the
reference. APOE €4 genotype was treated as a dichotomous variable: absence (as reference)
versus presence of either 1 or 2 €4 alleles.

Statistical Analysis

The cross-sectional associations between AB SUVR values and cognitive scores at the time of
scan acquisition were examined using multivariable linear regression models, adjusted for age,
gender, education, ethnicity, and APOE €4 genotype.

We used latent growth curve models [48] to test whether the rate of cognitive decline in
neuropsychological test scores varied according to AP status (positive or negative by visual
reading, quantitative SUVR level). We modeled cognitive trajectories over these 5 visits leading
up to the PET scan. Time was parameterized as years since the initial visit. Models were initially
unadjusted, and then adjusted for age, sex, education, ethnicity, and APOE genotype. As we
were particularly interested in whether the PET A level-associated difference of cognitive tra-
jectories varied by gender, ethnic groups, and APOE genotype, we decided a priori to perform
stratified analysis by subgroups of gender, ethnicity, and APOE genotype.

MClT is often a prodromal stage of AD. Thus subjects having MCI might be different than
the cognitively normal subjects in terms of their clinical, cognitive, and brain pathological sta-
tus, as well as the relationship among these factors. To examine the relationship between PET
ApB and cognitive change among cognitively healthy aging subjects only, we performed sensitiv-
ity analysis by excluding participants who were diagnosed with MCI at the time of PET scan.

Statistical analyses were performed in SPSS (version 18) and M-plus version 7. All p-values
were based on two-sided tests with significance level set at 0.05.

Results
Demographic/clinical characteristics and PET A

Forty-one (35%) subjects were classified as vAp positive (Table 1). Participants had a mean
global SUVR of 1.27 (SD = 0.22) (Table 1). Participants who had positive vAp had higher AB
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Fig 1. Procedures for quantitative PET amyloid analysis.

doi:10.1371/journal.pone.0123743.g001

SUVR values globally and in each of the ROIs (Table 1). Global AB SUVR and AB SUVR in the
ROIs were all highly correlated (correlation coefficients >0.9 and p<0.0001 for all).

Participants who had positive vA were older and were more likely to carry at least one
APOE €4 allele, compared with those with negative vA (Table 1).

SUVR values tended to increase with increasing age, although not significantly (Pearson’s
correlation coefficients of age with global, FRC, TMP, PAR, and CG werer = 0.16, p = 0.11;
r=0.15p=0.14,r=0.13,p =0.18;r = 0.18, p = 0.07; r = 0.16, p = 0.10, respectively.). Partici-
pants with one or two APOE &4 alleles had significantly higher SUVR than those without £4 al-
lele globally and in each region (Table A in S1 File). Women tended to have higher SUVR than
men globally and in all regions except for FRC (Table A in S1 File). For both males and females,
those who had positive vAp had higher A SUVR (Table B in S1 File).
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Table 1. Characteristics of study participants according to negative or positive visual reading of brain Ap imaging.

N (%)
Follow up time(years), mean (SD)
Age (years), mean (SD)
Education (years), mean (SD)
Race/Ethnicity, N(%)
White
African-Americans
Hispanic
Other
Female, N(%)
APOE ¢4 status, N(%)
0 €4 allele
1 €4 allele
2 €4 alleles
APOE €4 1 or 2 alleles, N(%)
MCI, N(%)
Mean Cognition Z-score, mean (SD)
Memory Z-score, mean (SD)
Language Z-score, mean (SD)
Visuospatial Z-score, mean (SD)
Speed Z-score, mean (SD)
Global SUVRT, mean (SD)
FRC SUVR', mean (SD)
TMP SUVRT, mean (SD)
PAR SUVRT, mean (SD)
CG SUVR?, mean (SD)

Total Negative Positive p

116 75 (65%) 41 (35%) /

11.8 (2.9) 11.6 (2.8) 12.2 (3.0) 0.30

84.5 (4.6) 83.8 (4.4) 85.9 (4.7) 0.02

12.71 (3.9) 12.61 (3.52) 12.76 (4.1) 0.85
0.46

40 (35) 24 (32) 16 (39)

53 (46) 36 (48) 17 (42)

22 (19) 15 (20) 7(17)

1(1) 0 1(2)

74 (64) 45 (60) 29 (71) 0.25
0.015

79 (68) 58 (77) 21 (51)

33 (28) 15 (20) 18 (44)

4 (3.4) 2(2.7) 2 (4.9)

37 (31) 17 (23) 20 (49) 0.004

17 (15) 10 (14) 7 (18) 0.55

0.38 (0.48) 0.35 (0.40) 0.40 (0.52) 0.55

0.19 (0.68) 0.27 (0.68) 0.04 (0.68) 0.08

0.53 (0.55) 0.52 (0.57) 0.55 (0.51) 0.78

0.45 (0.44) 0.42 (0.50) 0.49 (0.29) 0.40

0.41 (0.83) 0.46 (0.87) 0.32 (0.74) 0.41

1.27 (0.22) 1.17 (0.14) 1.48 (0.23) <0.0001

1.25 (0.24) 1.14 (0.15) 1.47 (0.25) <0.0001

1.19 (0.21) 1.10 (0.13) 1.38 (0.24) <0.0001

1.18 (0.23) 1.08 (0.14) 1.39 (0.24) <0.0001

1.45 (0.24) 1.35 (0.16) 1.67 (0.24) <0.0001

* Limit to 105 subjects who had both clinical reading (72 negative and 33 positive readings) and quantitative data.

doi:10.1371/journal.pone.0123743.t001

Cross-sectional analysis

The cognitive scores did not differ between participants with positive and negative vAf

(Table 1) and were not correlated with any of the AR SUVR values (correlation coefficients
were among the range of -0.1 to 0.1, and were not significant). Multivariable regression analysis
adjusted for age at scan, sex, education, ethnicity, and APOE also showed that there was no as-
sociation between any of the cognitive scores and PET A (Table C in S1 File).

Longitudinal analysis

All cognitive z-scores declined significantly over time during the follow-up period before imag-
ing (all unadjusted p<0.0001 except for visuospatial which had p = 0.014). Subjects with posi-
tive vAB declined in executive/speed at a rate that was 0.034 points/year greater than that of
subjects with negative vAp (Table 2). Higher A burden in the temporal region were associated
with faster decline in speed (one unit increase in SUVR values was associated with 0.080
points/year faster decline) (Table 2). PET A was not associated with decline rate of other cog-
nitive scores. Additionally adjusting for MCI status did not change the results materially
(Table 2).
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Table 2. Brain A in relation to the rate of cognitive decline during the decade prior to PET scan among non-demented participants.

Visual rating Global FRC TMP PAR CG
B p B P B P B p B p B p
Mean Cog. Model 1 -0.011 0.08 -0.015 0.33 -0.014 0.36 -0.022 0.17 -0.011 0.49 -0.011 0.43
Model 2 -0.01 0.10 -0.018 0.25 -0.014 0.33 -0.025 0.09 -0.015 0.31 -0.012 0.39
Model 3 -0.011 0.10 -0.026 0.06 -0.021 0.13 -0.032 0.02 -0.023 0.09 -0.021 0.09
Memory Model 1 -0.002 0.08 0.002 0.95 0.008 0.77 -0.01 0.75 0.001 0.98 0.007 0.80
Model 2 -0.017 0.10 -0.001 0.96 0.007 0.78 -0.014 0.62 -0.006 0.82 0.006 0.82
Model 3 -0.01 0.36 0.005 0.87 0.014 0.62 -0.013 0.67 0.001 0.98 0.014 0.60
Language Model 1 -0.003 0.62 -0.008 0.60 -0.002 0.89 -0.01 0.52 -0.013 0.36 -0.005 0.72

Model 2 -0.002 0.70 -0.009 0.54 -0.002 0.88 -0.012 0.44 -0.015 0.27 -0.005 0.70
Model 3 -0.001 0.84 -0.018 0.21 -0.009 0.54 -0.023 0.10 -0.023 0.08 -0.024 0.91
Visuo-spatial Model 1 0.005 0.41 -0.009 0.60 -0.008 0.60 -0.008 0.65 -0.004 0.78 -0.012 0.45

Model 2 0.005 0.39 -0.01 0.57 -0.009 0.59 -0.009 0.60 -0.006 0.72 -0.013 0.43
Model 3 0.003 0.68 -0.009 0.62 -0.005 0.78 -0.01 0.60 -0.009 0.63 -0.011 0.50
Speed Model 1 -0.034 0.02 -0.057 0.11 -0.057 0.10 -0.08 0.02 -0.037 0.25 -0.039 0.26

Model 2 -0.033 0.02 -0.064 0.07 -0.061 0.07 -0.088 0.01 -0.046 0.16 -0.044 0.20
Model 3 -0.039 0.01 -0.072 0.03 -0.068 0.03 -0.091 0.00 -0.055 0.07 -0.056 0.08

Results from latent growth curve models. B weights were the estimates for the association between A and cognitive change. A positive B indicated that
having higher level of A deposition (or positive compared to negative vAB) was associated with less annual decline in cognitive scores, while a negative
B indicated faster decline. Model 1: All subjects, adjusted for age at PET scan, gender, ethnicity, education, APOE €4 genotype. Model 2: All subjects,
adjusted for above covariates and MCI status. Model 3: Sensitivity analysis: Healthy aging subjects only (excluding 17 MCI subjects), adjusted for age at
PET scan, gender, ethnicity, education, APOE €4 genotype.

doi:10.1371/journal.pone.0123743.t002

Stratified analyses by APOE €4 genotype, ethnic groups, or gender

Stratified analysis showed that vA positivity, higher level of global AB deposition or A depo-
sition in each of the four ROIs (data not shown), was associated with a larger amount of annual
decline on mean cognition, language, and executive/speed scores in African-Americans but not
in Whites (Table 3), and in APOE €4 carriers but not in APOE €4 negative subjects (Table 3).
AP deposition was also related with a faster decline in memory in APOE €4 carriers, but not in
APOE &4 negative subjects (Table 3). The sample size of Hispanics was too small to yield trust-
worthy parameter estimation from the latent growth curve models. We found positive vAf was
associated with faster decline in mean cognition in males only. The vAB and global AR SUVR
were not associated with other cognitive score decline rate in either males or females (Table 3).

Sensitivity analysis
We compared the demographic, clinical, cognitive, and brain pathological profiles of MCI with
that of cognitively normal participants (Table D in S1 File). As expected, the MCI subjects in
general started with significantly lower cognitive performance than the non-MCI subjects, and
their cognitive scores were also much lower than non-MCI subjects at the time of the scan visit.
There were no difference of demographic, genetic, and AP status between MCI and non-MCI
subjects, except that no Hispanics had MCI while 14.5% of Whites and 15.1% of African-
Americans had MCL

After excluding 17 MCI participants from the analysis, we found the results remained simi-
lar to the main analysis, although the associations were slightly stronger compared to the re-
sults when MCI subjects were included (Table 2).
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Table 3. Brain A in relation to the rate of cognitive decline during the decade prior to PET scan among non-demented participants, stratified by
APOE €4 genotype, ethnicity, and gender.

Visual A rating Positive vs. Negative Global Ap
APOE g4+ APOE €4 - APOE €4+ APOE €4 -
B p B P B p B p
Mean Cog. -0.028 0.004 -0.002 0.805 -0.04 0.019 0.004 0.802
Memory -0.048 0.003 -0.004 0.795 -0.064 0.124 0.058 0.118
Language -0.026 0.006 0.009 0.166 -0.042 0.006 NA NA
Visuospatial 0.133 0.125 0.116 0.247 0.293 0.564 -0.073 0.802
Speed -0.025 0.086 -0.025 0.175 -0.057 0.043 -0.051 0.293
White African-Americans White African-Americans
B p B p B p B p
Mean Cog. -0.005 0.63 -0.023 0.002 0.022 0.39 -0.056 <0.0001
Memory -0.002 0.33 -0.027 0.072 0.039 0.39 -0.02 0.60
Language 0.004 0.67 -0.019 0.014 0.015 0.51 -0.048 0.001
Visuospatial 0.008 0.36 0.002 0.85 0.011 0.77 -0.023 0.39
Speed -0.013 0.52 -0.047 0.017 -0.013 0.83 -0.115 0.001
Males Females Males Females
B p B p B p B p
Mean Cog. -0.018 0.04 -0.008 0.34 -0.009 0.74 -0.017 0.30
Memory -0.026 0.12 -0.019 0.16 0.012 0.74 -0.014 0.71
Language -0.022 0.69 0.008 0.28 NA NA -0.001 0.95
Visuospatial -0.006 0.44 0.009 0.29 -0.022 0.37 -0.002 0.91
Speed -0.018 0.35 -0.035 0.07 -0.059 0.29 -0.051 0.15

Results from latent growth curve models, adjusted for age at PET scan, sex, gender, ethnicity, education, and APOE &4 genotype, except for the variable
in stratification. B weights were the estimates for the association between AB and cognitive change. A positive B indicated that having higher level of A
deposition (or positive compared to negative vAB) was associated with less annual decline in cognitive scores, while a negative B indicated faster decline.
NA: trustworthy parameter estimation was Not Available.

doi:10.1371/journal.pone.0123743.t003

Discussion

In this multiethnic, non-demented elderly population, we found participants with higher load
of AP depositions experienced an accelerated decline in executive/speed in the decade prior to
the scan. Furthermore, we found the association between AP deposition and cognitive trajecto-
ry only among African-Americans or among APOE &4 positive subjects.

Approximately 35% of the study participants had positive AB depositions according to visu-
al reading of the PET scans, a proportion similar to other reports of AB deposition in healthy
elderly based on either imaging techniques or postmortem pathological analysis [1-7]. Besides
being slightly older, these vAp positive subjects were more likely to have APOE €4 allele than
those with negative visual A readings. These findings are consistent with previous reports[25-
29]. We found the average retention ratio of Af in the four ROIs compared to cerebellum were
1.27, similar to what has been reported in other populations using florbetaben[24,45] or PiB
[27,28].

A recent meta-analysis revealed mixed evidence for cross-sectional association between cog-
nitive function and AP deposition, although small effects on episodic memory or global cogni-
tion were found according to amyloid burden[16]. In our cross-sectional analysis, Ap burden
in general was not associated with concurrent cognitive scores. This null association has also
been reported by previous studies either using florbetaben [24] or PiB AB[4,21] as the PET
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tracer. While it is possible that amyloid status in healthy elderly provides no direct link with
the cognitive profile, there are other potential reasons. For example, although in normal older
individuals AP deposition may be the earliest pathological event before clinical decline, tau or
other pathophysiologic processes such as brain atrophy may also be involved[28]. Thus, cogni-
tive variation may be associated with the combined effects of all these physiopathological indi-
cators but not a single one of them.

We found that AB burden was associated with more rapid decline in executive/speed in the
years prior to AP imaging in an older population with an average age of 85. This finding is con-
sistent with previous reports of higher PET A being associated with greater decline in execu-
tive functions[27,29]. Previous studies have also found higher A burden was associated with
steeper trajectories of verbal memory [27], visual memory[29], semantic fluency[29], working
memory|[26], and visuospatial ability[26] in non-demented elderly. An early study[25] found
clinically defined cognitively ‘declining’ subjects were much more likely to show cortical PiB
binding than ‘stable’ subjects. Landau and colleagues found that subjects with positive florbeta-
pir declined significantly faster than those with negative florbetapir on Cognitive subscale of
the Alzheimer’s Disease Assessment Scale [28]. Thus, our results add to the existing body of ev-
idence that AP deposition in the brain might be associated with preceding cognitive trajectory.
Nevertheless, results were not always consistent. For example, association of A with visual
memory was found in one[29] but in another other study[27]. Furthermore, the use of different
measures of cognition and different tracers precludes a direct comparison of the findings across
studies. With regard to regional AP deposition, we found significant associations between de-
cline in executive/speed and AP deposition in the temporal region, a region that was also re-
ported in a previous study[27]. The A deposition in the frontal region, the region that is
involved for executive/speed function[49], was also associated with executive/speed among
cognitively normal subjects.

In the sensitivity analysis by excluding subjects who were considered as MCI at the time of
scan visit, we found positive vAB, higher AB SUVR in global, FRC, and TMP regions were asso-
ciated with faster decline in executive/speed score, and SUVR values in the TMP region was as-
sociated with faster decline in mean cognition. The associations seemed to be even slightly
stronger compared to the results from the entire study population. The exact reason is un-
known. It may not simply be due to the lower starting cognition score positioning the MCI
subjects less room to deteriorate, as MCI subjects continued to decline over time. Other poten-
tial explanation could be that, AB presence triggers the cascade of cognitive decline in cogni-
tively healthy subjects, while for subjects who developed MCI, the initial cognitive decline has
already happened and the continued decline depends less on Af burden but more on other
pathological changes such as Tau or structural brain changes[50]. Nevertheless, these hypothe-
ses need to be tested in future studies.

Ethnic differences in the associations between A and prior cognitive change have not been
previously reported, but might be important considering the increasingly diverse general popu-
lation in the US. We found higher AB deposition was associated with faster decline in language,
speed, and mean cognitive scores among African-Americans only. It remains unknown wheth-
er the findings were contributed by factors other than biological interaction, such as the smaller
sample size of Whites than African-Americans, and the slightly lower percentage of women
and APOE &4 carriers in Whites. We also found that higher AP deposition was associated with
a faster decline in cognitive scores only in APOE &4 carriers. This observation is in line with
cross-sectional evidence[18,19], and is probably not surprising as APOE €4 constitutes the
main genetic risk factor for AD[51] and is supposed to be involved in the formation and clear-
ance of AB[52,53]. However, it remains to be confirmed in future studies. We found no major
difference of the association between AP deposition and cognition between females and males.
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Some limitations of the current study need to be noted. Our study did not examine whether
brain AP deposit is associated with future cognitive change. However, prospective follow-up of
these participants is ongoing, and future data on cognitive assessments will assist us in under-
standing the relationship between brain A and subsequent cognitive change. Secondly, we
had a smaller percent of Hispanic participants in the current study sample than the overall
WHICAP population, and due to the small number of Hispanic subjects we were not able to es-
timate the association between AP and cognitive change. More Hispanic participants will be re-
cruited into the imaging study in the future in order to extrapolate the results to the source
community population. The interreader agreement for vAp was not perfect and might be lower
than some other studies[54-56]. However, the potential misclassification might have biased
the results toward an inflated type II error rather than a false positive result (type I error).
Thus, despite imperfect vAB agreement, our confidence remains with regard to the significant
association between vAf and cognitive decline.

Our study has many strengths. While most of the previous studies examining cognition and
PET Ap included predominantly a single race/ethnicity group (mainly Whites), our study in-
cluded an ethnically diverse community-based population. Furthermore, separate estimates of
the association between Af and cognitive change were made for both Whites and African
Americans. Our study covered an extended period of time for the cognitive change. We used
composite cognitive scores based on our previous factor analysis, thus less likely to be limited
by the floor or ceiling effects seen in many individual tests. Consensus diagnosis of dementia
and MCI was determined according to standard research criteria. Finally, measures for multi-
ple potential confounding factors have been carefully recorded and adjusted in the analyses.

Taken together, our results suggest that positive or greater burden of Af in the brain is asso-
ciated with accelerated decline in executive/speed function in the years prior to the PET scan-
ning. In addition, our findings suggest further investigation of the implication of PET Af
deposition on cognition, while taking into account factors such as ethnicity and APOE

genotype.
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