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Abstract 

Background Alzheimer’s disease (AD) risk variants have been identified in European ancestry cohorts that have 
stronger effects at certain ages, in individuals with a specific sex, or in those with specific isoforms of APOE, the strong‑
est AD risk locus. However, sample sizes in African ancestry (AA) cohorts have been underpowered to perform strati‑
fied analyses.

Methods We generated genome‑wide association study datasets stratified by sex, age at onset (< 75 vs ≥ 75), 
and APOE‑ε4 carrier status in AA cohorts from MVP and the Alzheimer’s Disease Genetics Consortium (ADGC). 
Outcomes in MVP were AD and related dementias (ADRD; n = 4073 cases and 19,648 controls) and proxy dementia 
(i.e., reported dementia in a parent, n = 6216 cases and 21,566 controls) while ADGC analyses examined AD (n = 2425 
cases and 5069 controls). The proxy dementia GWASs were included in the sex‑stratified meta‑analysis corresponding 
to the sex of the affected parent. The top genes were tested for differential expression in AA brain tissue.

Results In addition to the APOE region, genome‑wide significant associations were observed in an intergenic region 
near the EPHA5 gene (rs141838133, p = 2.19 ×  10–8) in individuals with onset < 75 years, in GRIN3B near the known AD 
risk gene ABCA7 (rs115882880, p = 3.83 ×  10–8) in females, and near TSPEAR (rs139130053, p = 4.27 ×  10–8) in APOE‑ε4 
non‑carriers. EPHA5 regulates glucose homeostasis, and ephrin receptors modify the strength of existing synapses 
in the brain and in pancreatic islets. It is unclear whether GRIN3B represents a locus distinct from ABCA7. Rs115882880 
was a significant eQTL for GRIN3B but not ABCA7 in AA brain samples. TSPEAR regulates Notch signaling but has not 
been linked to neuronal function.
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Conclusions Age, sex, and APOE‑stratified analyses of dementia in AA participants from two cohorts revealed poten‑
tial new associations. Stratified analyses may yield critical information about the genetic heterogeneity underlying 
dementia risk and lead to advances in precision medicine.

Keywords Alzheimer’s disease, Genome‑wide association study, African Ancestry, RNA‑sequencing, Stratified

Introduction
The higher prevalence of Alzheimer’s disease (AD) in 
African ancestry (AA) cohorts compared to popula-
tions of European (EUR) ancestry [1, 2] is likely due to 
a combination of societal inequalities, factors related to 
comorbidities that affect AD risk, and genetics. However, 
despite ongoing initiatives to increase representation 
of AAs in genetic studies of AD and related dementias 
(ADRD), the sample sizes of AA and other non-EUR 
groups available for genetic studies of ADRD are rela-
tively small and underpowered for genome-wide stud-
ies [3]. As a result, the number of established AD risk 
loci in AAs is currently a fraction of those identified in 
EURs [4–6]. This disparity limits our ability to under-
stand the genetic basis of ADRD in AAs and develop 
genetics-guided treatment strategies that may be unique 
to AAs. Moreover, since the causal variants in genes 
associated with AD across ancestry groups often differ, 
knowledge gained from the collective group of disease 
risk variants may increase understanding about causal 
mechanisms that could be exploited for designing thera-
peutic approaches. Two examples include the genes sor-
tilin related receptor 1 (SORL1 [7, 8]) and ATP binding 
cassette subfamily A member 7 (ABCA7 [5]), which have 
distinct risk alleles within ancestry groups.

Despite these challenges, substantial progress has been 
made in understanding the genetic architecture of AD/
ADRD risk in AAs [9]. The advent of the U.S. Depart-
ment of Veterans Affairs (VA) Million Veteran Program 
(MVP) substantially increased the sample size available 
for AD/ADRD genetic studies in AAs. A genome-wide 
association study (GWAS) of ADRD that included AA 
participants in MVP and the Alzheimer’s Disease Genet-
ics Consortium (ADGC) [10] identified genome-wide 
significant (GWS) associations with variants in genes 
previously linked to AD risk (apolipoprotein E (APOE), 
ABCA7, triggering receptor expressed on myeloid cells 
2 (TREM2), CD2-associated protein (CD2AP)) and one 
novel gene roundabout guidance receptor 1 (ROBO1) [5].

Sex, onset age, and APOE genotype affect the overall 
and/or genetic risk of AD. Many studies have explored 
sex differences in AD risk and presentation [11] (recently 
reviewed in [12]). Women have an increased risk of AD, 
an effect that may be partially influenced by a sex spe-
cific effect of APOE genotype [13]. There are also well 
documented differences in disease onset, progression, 

presentation, and pathology based on APOE genotype 
[14]. Highly penetrant rare variants in amyloid precursor 
protein (APP), and presenilin 1 and 2 (PSEN1, PSEN2), 
and SORL1 are associated with early-onset AD (onset age 
< 60 years) and often in an autosomal dominant pattern, 
but other variants in these genes are associated with the 
common form of late-onset AD (onset age > 60 years). 
Most of the established AD risk genes are associated with 
late-onset AD. In studies of EUR ancestry populations, 
evidence of association with some loci for AD and AD-
related traits is greatly influenced by sex [15, 16], onset 
age [17], disease stage [18], and APOE genotype [19–21]. 
A GWAS conducted in the ADGC AA cohorts identi-
fied GWS associations that were apparent in individuals 
with or without an APOE-ε4 allele [10]. Here, we report 
findings from a GWAS including data from the MVP and 
ADGC AA cohorts among individuals stratified by sex, 
onset age (< 75 years vs. ≥ 75 years), and APOE-ε4 status. 
These analyses include a small increase in the number of 
MVP ADRD cases from the unstratified analyses previ-
ously published (N = 61) and utilize a larger reference 
panel for SNP imputation (TopMed).

Methods
MVP subjects and diagnostic classification procedures
The MVP cohort and methods for defining ADRD are 
described in detail elsewhere [22–24]. Briefly, MVP par-
ticipants are former US military service members who 
obtain their healthcare in the VA healthcare system 
who consented to allow researchers to link genetic data 
obtained from their biospecimens to their VA electronic 
medical records (EMR) for the purpose of identifying 
genetic risk factors for a variety of diseases and other 
traits. MVP participants also complete surveys related to 
military experiences, lifestyle factors, and health histo-
ries of themselves and their parents, including questions 
about AD or dementia [23].

This study included individuals who were identified 
genetically as AA using the Harmonized Ancestry Race 
Ethnicity (HARE) method [25]. ADRD cases for this 
study included persons with first reported ICD code 
ages 60 and older who had two or more ICD codes for 
AD or other type of dementia (i.e., frontal–temporal 
dementia, vascular dementia, or Lewy body dementia). 
Supplementary Fig.  1 shows all ICD codes and criteria 
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used for ADRD diagnosis. After exclusions for relat-
edness and other considerations (described in detail 
below), 4,073 participants met these criteria for ADRD 
and were included in the genetic analyses. Because the 
number of dementia-free participants in MVP greatly 
exceeds the number of cases, potential controls were 
divided into two groups, one for the ADRD case/con-
trol analysis and a second for inclusion in the “proxy” 
ADRD GWAS described below. Different age cutoffs for 
cases and controls were used to maximize power and 
minimize misclassification. MVP AAs have a substan-
tially larger proportion of cases with onset age between 
60 and 65 compared to MVP EURs and we wanted to 
retain these individuals while minimizing the number of 
controls who were later diagnosed with ADRD. A total 
of 19,648 individuals, equaling approximately 4.5 times 
the number of ADRD cases, who were ages 65 and older 
without a recorded history of dementia, MCI, or history 
of AD medication prescription, and who did not report a 
parental history of dementia, were randomly selected as 
controls for the ADRD GWAS. Proxy AD/ADRD cases 
self-reported a history of dementia in their fathers or 
mothers and were included in the paternal or maternal 
proxy ADRD GWAS, respectively. Individuals with two 
affected parents were included in both the maternal and 
paternal proxy ADRD analyses. Participants aged 45 and 
older who didn’t report either parent as having demen-
tia were included as controls in the proxy analysis. Par-
ticipants included in the ADRD GWAS were excluded 
from the sample for the proxy dementia/ADRD GWAS 
so that ADRD and proxy analyses are independent. 
After applying these criteria, 4,385 maternal proxy cases, 
2,256 paternal proxy cases, and a common control proxy 
cohort of 45,970 subjects remained for analysis.

ADGC subjects and diagnostic classification procedures
Ascertainment and diagnostic procedures applied to 
participants in the ADGC cohorts have been described 
previously [10]. Briefly, multiple cohorts with different 
methodologies comprise the full sample. It contains both 
family-based and case–control cohorts with a substantial 
number of autopsy-confirmed cases. All controls were 
screened for AD. The study included subjects from the 
Adult Changes in Thought Study, the National Institute 
on Aging Alzheimer ‘s Disease Centers, the University of 
Miami/Vanderbilt University, the Mount Sinai School of 
Medicine Brain Bank, the Washington Heights Inwood 
Columbia Aging Project, The African American Alz-
heimer’s Disease Genetics Study, the MIRAGE Study, 
NIA- LOAD/NCRAD, the Mayo Clinic, the Rush Uni-
versity Alzheimer’s disease Center, the Chicago Health 
and Aging Project, the Indianapolis Ibadan Dementia 
Study, the Genetic and Environmental Risk Factors for 

Alzheimer’s Disease Among African Americans Study, 
the University of Pittsburgh, and Washington University. 
All subjects were recruited under protocols approved by 
the appropriate Institutional Review Boards. These com-
bined cohorts included 2,425 AD cases and 5,069 con-
trols in total, representing 751 male cases, 1,674 female 
cases, 1,276 APOE-ε4 positive cases, 851 APOE-ε4 nega-
tive cases, 1,011 cases with onset < 75 years, and 1,414 
cases with onset ≥ 75 years.

Genotype data generation, quality control, and SNP 
imputation procedures and population structure analysis
Genotype data processing and cleaning was performed 
by the MVP Bioinformatics core using the MVP 1.0 cus-
tom Axiom array [26]. Quality control (QC) included 
checks for sex concordance, advanced genotyping batch 
correction, and assessment for relatedness. Genotyp-
ing in the ADGC cohorts was performed using vari-
ous microarrays and these data were processed using 
methods described elsewhere [10]. After extensive QC, 
SNP genotypes were imputed in both MVP and ADGC 
datasets using the TopMed r2 imputation panel, SHA-
PEIT4 version 4.1.3 for phasing, and MINIMAC version 
4. Related individuals in the MVP dataset defined as a 
kinship coefficient of 0.09375 or higher were removed 
from analysis. When both members of a pair were cases, 
we selected a subject with AD-specific ICD codes or, in 
the absence of ICD codes, one individual was randomly 
selected. In MVP, principal components (PC) of ancestry 
were computed with FlashPCA version 2 [27], using only 
AA individuals and a linkage-disequilibrium pruned set 
of 170,207 SNPs that excluded the major histocompat-
ibility complex region of chromosome 6. In the ADGC 
cohorts, to identify outlier samples within each dataset 
with ancestry group, we performed a PC analysis using 
‘smartpca’ in EIGENSOFT version 5.0 for the subset of 
~ 20,000 LD-pruned SNPs used for relatedness checks on 
genotypes from all samples within each individual data-
set and from the 1kG Phase 3 reference panels. Individu-
als not clustering with their reported ancestry groups 
(or between reported ancestry groups for admixed sub-
jects) were excluded from analysis when including 1KG 
groups. The PCs used for analysis were generated in the 
remaining AA individuals. APOE genotypes were deter-
mined using the “best guess” imputed genotypes (80% 
confidence threshold) for the rs7412 and rs429358 SNPs. 
SNPs with minor allele frequency (MAF) > 1% and impu-
tation quality  (r2) > 0.4 were included in each analysis.

Statistical and bioinformatic analysis methods
In both the ADGC and the MVP cohorts, GWAS were 
conducted within six strata of the data: males and 
females, those with ADRD/AD onset age < 75 years vs. 
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≥ 75 years, and APOE ε4 allele carriers and non-carri-
ers. The onset age cutoff was chosen for two reasons: 
first, that is the cutoff that was previously being used 
for onset based genetic analyses and second, that cut-
off approximately split the case sample into two evenly 
sized bins. All MVP controls were ≥ 65 years of age at 
last visit and a common set of controls were included 
for each stratum (i.e. controls were not age selected 
for the onset stratified analyses). ADGC cohorts with 
fewer than 10 cases within each analysis stratum were 
excluded from that analysis. Results from the remain-
ing 14 ADGC cohorts were combined by meta-analy-
sis using METAL version 2020–05-05 [28] and these 
results were subsequently combined with those from 
MVP. Individuals with the APOE ε2/ε4 genotype were 
excluded from analyses stratified by ε4 carrier status. 
Association of each SNP with AD in the ADGC cohorts 
and ADRD and proxy dementia in MVP was tested 
using logistic regression models including terms for sex 
(excluding the sex-stratified analysis) and the first ten 
ancestry PCs implemented in PLINK 2.0. Firth logistic 
regression was applied when the standard regression 
model failed to converge. GWAS was performed sepa-
rately for the MVP maternal and paternal proxy demen-
tia outcomes using a common set of controls, and the 
results from each GWAS were combined via meta-anal-
ysis with the respective sex-stratified AD and ADRD 
GWAS results using betas weighted by the inverse of 
their standard errors and METAL. The result of the 
ADGC meta-analysis was then meta-analyzed with 
the corresponding MVP results. The betas and stand-
ard errors of the proxy GWASs were both multiplied 
by two to account for the fact that they only share half 
their genes with the affected parent [29]. Functional 
annotation, expression quantitative trait loci (eQTL) 
analysis, gene-based tests, gene set enrichment, and 
pathway analyses were performed using the FUMA web 
portal [30]. FUMA uses the MAGMA [31] method for 
gene-based and gene set enrichment tests.

RNA‑seq expression profiling and eQTL analysis
The methods used to assess variants for potential regula-
tory effect have been described in detail elsewhere [32]. 
Briefly, the potential of variants as eQTLs was assessed 
in pre-frontal cortex tissue from a cohort of 177 AA neu-
ropathologically determined AD case and control donors 
(125 AD cases and 82 neuropathologically determined 
controls) assembled from 13 ADRC brain banks. Gene 
expression was assessed via RNA-seq. Genome-wide 
genotypes were assessed using the Illumina Global Diver-
sity Array (~ 1.8 million variants) and imputed using 
1000 Genomes phase 3v5 reference data [33]. We tested 
association between the significant variants with MAF 
> 5% from stratified analyses with all expressed genes 
within 200 kb. A regression model assessed association 
between the rLog expression values with the additively 
(0 to 2) coded variant, with covariates for RNA integrity 
number (RIN), age at death, sex, batch and estimated 
cell proportions. A false discovery rate (FDR) corrected 
p-value was computed to adjust for the number of genes 
examined with each variant.

Results
Table  1 shows the demographic characteristics of the 
MVP and ADGC cohorts contributing to each of the 
six stratified GWAS analyses. Outside the APOE region, 
we identified three genome-wide significant associa-
tions, one each in those with a censoring age < 75 years, 
females, and APOE-ε4 non-carriers, as well as suggestive 
associations with several additional loci, with little evi-
dence for genomic inflation in the GWAS for each strati-
fied group (λ < 1.05, Table  2, Supplementary Figs.  2–4, 
Supplementary Tables  1–6). Table  2 shows the GWS 
loci, including a SNP in an intergenic region near ephrin 
receptor A5 (EPHA5; rs141838133, OR = 1.66, p = 1.66 
×  10–8) in individuals with onset < 75 years, in glutamate 
ionotropic receptor NMDA type subunit 3B (GRIN3B) 
near the known AD risk gene ABCA7 (rs115882880, 
OR = 0.74, p = 1.8 ×  10–9) in females, and between the 

Table 1 Demographic characteristics of the MVP and ADGC cohorts contributing to each analysis stratum

Parental proxy cases were only available in the MVP cohort

NA Not available

Cohort Females 
N cases/N 
controls, (µ 
age cases/µ 
age controls)

Maternal 
Proxy N 
cases/N 
controls

Males N 
cases/N 
controls (µ 
age cases/µ 
age controls)

Paternal Proxy 
N cases/N 
controls

APOE‑ε4 
+ N cases/N 
controls (µ age 
cases/µ age 
controls)

APOE‑ε4‑ N 
cases/N 
controls (µ 
age cases/µ 
age controls)

Onset < 75 
N cases/N 
controls (µ age 
onset cases/µ 
age controls)

Onset ≥ 75 
N cases/N 
controls (µ age 
onset cases/µ 
age controls)

MVP 120/1,090 
(67.7/70.2))

4,385/45,970 3,953/18,558 
(75.5/72.0)

2,256/45,970 1,555/5,693 
(74.9/72.7)

1,950/11,477 
(75.3/73.2)

2,430/13,326 
(63.9/73.0)

1,643/6,322 
(82.5/73.0)

ADGC 1,674/3,678 
(77.4/76.2)

NA 751/1,391 
(76.2/76.3)

NA 1,276/1,528 
(75.0/75.3)

851/3,207 
(79.3/76.5)

1,011/5,069 
(68.7/76.2)

1,414/5,069 
(83.0/76.3)
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genes thrombospondin type laminin G domain and EAR 
repeats (TSPEAR);and ubiquitin-conjugating enzyme 
e2 g2 (UBE2G2) in APOE-ε4 non-carriers rs139130053, 
OR = 0.52, p = 4.39 ×  10–8). All these SNPs showed evi-
dence for association with the outcome in both MVP 
and ADGC. Figure 1 shows the regional Manhattan plots 
for these associations. Supplementary Tables  1–6 show 
results for SNPs with meta-analysis p-values less than 
1.0 ×  10–5 within each of the six strata, within MVP and 
ADGC, and the unstratified result published in [5]. Fig-
ure 2 shows the odds ratios and 95% confidence intervals 
(C.I.) for each SNP in both the group where it was identi-
fied and the corresponding strata. For two of the GWS 
associations, the 95% C.I. in the two strata do not over-
lap, whereas the C.I. for the ORs for rs139130053 in the 
APOE-ε4- and APOE-ε4 + groups overlap by 0.01. There 
was a nominally significant (p = 2.34 ×  10–4) association 
in males for rs115882880, but no evidence for association 
(p > 0.05) in the opposite strata for the other two GWS 
associations. There was one significant female-specific 
gene-based test result in cyclin-dependent kinase inhibi-
tor 2b (CDKN2B, p = 2.29 ×  10–6).

Functional annotation and gene set enrichment analysis
Several gene ontology terms and canonical pathways had 
significantly enriched associations, including triglyc-
eride rich lipoprotein particle clearance  (padj = 0.045) 
in onset < 75, the alpha defensins pathway in females 
 (padj = 0.009), and the KEGG insulin signaling pathway 
in APOE-ε4 positives  (padj = 0.025). Previously identified 

GO terms and pathways, primarily driven by genes in the 
APOE region on chromosome 19, were also significant 
in several strata (results not shown). None of the GWS 
SNPs showed evidence for being eQTLs in the Genotype 
Tissue Expression database, which is primarily comprised 
of individuals of EUR ancestry, or two recently published 
databases [34] of AA samples [35] (N = 1,032 and N = 
805). Two of the SNPs (rs141838133 and rs139130053) 
did not appear in the AA brain expression databases, 
likely due to their low MAFs. The RNA-seq data gen-
erated internally showed a significant eQTL effect for 
rs115882880 on expression of both GRIN3B (r = −0.15, 
p = 0.046, Fig. 3) and WD Repeat Domain 18 (WDR18 r 
= −0.12, p = 0.017), but not ABCA7 (p = 0.46). Figure 3 
shows expression levels of GRIN3B by rs115882880 gen-
otype in the full sample. ‘A’ alleles were associated with 
lower GRIN3B expression. The stratified eQTL analyses 
showed that the eQTL effect of rs115882880 on GRIN3B 
was not significant in males and attenuated in females 
(p = 0.077), while the eQTL effect on WDR18 was 
stronger in females than in the full sample (r = 0.29, p = 
0.004) (Fig. 3). Although the peak SNP between TSPEAR 
and UBE2G2 is not an eQTL for either of these genes, 
UBE2G2 itself is nominally significantly over expressed in 
AD vs control brains (p = 0.02).

Discussion
Here, we present the results of GWAS analyses of 
dementia in AAs stratified by biologically relevant factors 
known to affect the risk and/or trajectory of ADRD. We 

Table 2 Association results in the MVP/ADGC meta‑analysis for the three genome‑wide significant SNPs shown in each stratum

Meta P-value = P-value from the meta-analysis of MVP ADRD, ADGC AD, and MVP maternal and paternal proxy for the female and male strata

A1 Effect allele, A1 Freq Allele frequency of A1, OR Odds ratio for the effect of A1

Genome-wide significant P-values are in bold

OR [95% C.I.]
(Meta P‑value)

SNP A1 A1 Freq Gene APOE‑ε4 + APOE‑ε4 ‑ Female Male Onset < 75 Onset ≥ 75

rs141838133 T 0.02 EPHA5 1.15 [0.89–1.48]
(2.87E‑01)

1.44 [1.17–1.77] 
(4.61E‑04)

1.10 [0.89–1.39] 
(3.48E‑01)

1.38 [1.19–1.60] 
(3.19E‑05)

1.66 [1.39–1.99] 
(2.24E‑08)

0.95 [0.74–1.20] 
(6.47E‑01)

rs115882880 A 0.10 GRIN3B 1.25 [1.12–1.39] 
(6.99E‑05)

1.18 [1.07–1.30] 
(9.07E‑04)

1.35 [1.23–1.49] 
(1.81E‑09)

1.14 [1.06–1.22] 
(2.34E‑04)

1.19 [1.09–1.30] 
(7.78E‑05)

1.22 [1.10–1.35] 
(1.34E‑04)

rs139130053 A 0.01 TSPEAR 0.89 [0.65–1.21] 
(4.60E‑01)

0.52 [0.41–0.66] 
(4.39E‑08)

0.89 [0.68–1.16] 
(3.90E‑01)

0.75 [0.63–0.89] 
(1.31E‑03)

0.74 [0.60–0.92] 
(6.32E‑03)

0.70 [0.53–0.91] 
(7.00E‑03)

(See figure on next page.)
Fig. 1 Regional Manhattan plots showing the genome wide significant associations: The EPHA4 region on chromosome 4 identified in individuals 
with ADRD onset less than 75 years (A). The GRIN3B‑ABCA7 region on chromosome 19 identified in females (B). The TSPEAR region on chromosome 
21 identified in individuals without an APOE‑ε4 allele (C). Chromosomal position in GRCh38 is on the X axis and the Y axis shows the ‑log10 p‑values 
for each SNP in the region. The degree of linkage disequilibrium with the peak SNP (purple diamonds) is indicated by the color of the point 
on the plot in the 1000 Genomes Project AFR reference panel
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Fig. 1 (See legend on previous page.)
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identified two potentially novel risk variants in previously 
unreported genes and one potentially novel variant in a 
known risk locus.

It is difficult to determine whether the SNP in GRIN3B 
represents a distinct association signal from the previ-
ously identified ones in ABCA7. The lead SNP in females 
is in moderate LD  (r2 = 0.38) with the ABCA7 SNP iden-
tified by Reitz et al., but low LD  (r2 < 0.03) with the lead 
SNP(s) identified previously in an unstratified meta-
analysis of MVP and ADGC AAs [5]. The unstratified 
result is also highly significant, but the magnitude of 
the association is stronger in females and the maternal 
proxy cases. Conditional analysis of the GRIN3B SNP 
adjusting for the ABCA7 SNPs is difficult to interpret 
since the peak ABCA7 SNPs are different in MVP and 
the ADGC females (and in the unstratified analysis), and 
also because the results is driven by ADGC and the MVP 
maternal proxy analyses, the latter of which then requires 
two proxy variants rather than one, which may introduce 
an additional level of misclassification. Despite these 
caveats, we tested models conditional on rs115882880. 
In both ADGC and MVP, the results were attenuated but 
still significant (ADGC p-value = 0.0002, MVP p-value 
= 0.01). Leaving out the maternal proxy results from the 
meta-analysis attenuated the result as well (OR = 1.41, 
p = 2.17 ×  10–6).

Although the eQTL results do not provide direct evi-
dence for or against the independence of the signal in 
GRIN3B on a genetic level, the fact that it affects the 
expression of GRIN3B and WDR18 but not ABCA7 sug-
gests a biological effect of the SNP itself that is independ-
ent of ABCA7.

Protein coding genes near the GWS SNPs have poten-
tial biological significance to AD and dementia. EPHA5 
has two functions through which it might affect risk. Eph 
receptors modify the strength of existing synapses in the 
adult brain [36], and in pancreatic islets it affects basal 
and glucose-stimulated insulin secretion and improves 
glucose homeostasis. Other Eph receptors (EPHA1, 
EPHA4, EPHB) have been previously associated with 
AD risk and AD-related pathology [37–42], reviewed 
in [43]. GRIN3B is a member of a gene family encoding 
glutamate-regulated ion channels expressed throughout 
the central nervous system, especially motor neurons 
[44], where they can have both excitatory or inhibitory 
effects depending on which additional subunits comprise 
the channels [45]. WDR18 has not been linked to demen-
tia relevant outcomes but is involved with many cellular 
processes including cell cycle progression, signal trans-
duction, apoptosis, and gene regulation [46, 47]. Finally, 
TSPEAR functions in the Notch signaling pathway which 
has been previously linked to AD pathology [48–51]. 

Fig. 2 Forest plot showing the effect sizes (odds ratios) and 95% confidence intervals for the MVP/ADGC meta‑analysis results for the genome‑wide 
significant SNPs in both the stratum in which the association was identified and the opposite stratum. The green points show the effect 
of rs139130053 in APOE‑ε4 negative individuals (upper green point) and APOE‑ε4 positive individuals (lower green point). The pink points show 
the effect of rs115882880 in females (upper pink point) and males (lower pink point). The blue points show the effect of rs141838133 in individuals 
with onset age ≥ 75 years (upper blue point) and individuals with onset age < 75 years (lower blue point)
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TSPEAR itself, however, has not been implicated in AD 
risk and appears to function in human tooth and hair fol-
licle morphogenesis [52], but is expressed in the adult 
brains of mice [53]. Expression in human brain, how-
ever, is relatively low. Alternately, the association could 
be driven by the gene on the other side of the peak SNP, 
UBE2G2, which has functions related to the degradation 
of misfolded proteins in the endoplasmic reticulum [54], 
which may suggest an effect on ADRD risk through tau. 
UBE2G2 is expressed in several human brain regions 

according to GTEx. Nothing in the literature suggests 
why either of these genes might influence dementia risk 
only in, or more strongly within, the strata in which they 
were observed.

CDKN2B, the gene with a significant gene-based test 
result, has been previously implicated as a potential AD 
risk locus. First identified through linkage studies in 
families of EUR ancestry [55] and also consanguineous 
Israeli-Arab families [56], three SNPs in the gene were 
later associated with AD [57], but the associations were 

Fig.3 Expression levels (Y axis) of ABCA7 (first column), GRIN3B (second column), and WDR18 (third column) by imputed rs115882880 dosage (X 
axis) in African American brain tissue in females (A), males (B), and unstratified (C). The red points represent AD cases, and the blue dots represent 
cognitively normal controls
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not replicated [58]. The fact that we observed an asso-
ciation in female individuals of AA ancestry provides 
further evidence that this gene may influence AD risk. 
Cyclin dependent kinases have been hypothesized to 
affect AD through mitogenic pathways such as the p21/
MAPK cascade which may lead to disturbed APP pro-
cessing or hyperphosphorylated tau [59].

Several of the suggestive association signals (p < 5.0 
×  10–7) have potential links to AD biology. Protein 
phosphatase 3, regulatory subunit b, alpha (PPP3R1) 
is involved in a  Ca2+-responsive signaling pathway and 
lower expression of the gene caused perturbations in 
numerous AD-relevant co-expression networks [60]. 
Variants in the gene predicted more rapid progression 
of AD [61]. The association was observed in females 
with a variant not previously linked to AD (rs113668008, 
p = 8.52 ×  10–8). Endoplasmic reticulum oxidoreduc-
tin 1-like, beta (ERO1B) is involved in pro-cellular sur-
vival pathways via regulation of protein folding and is 
involved in insulin production. In cell lines, it is upreg-
ulated in response to Aβ and Tau expression [62]. The 
association signal was observed in males (rs79144457, 
3.40 ×  10–7). Also in males, variants in the gene caseino-
lytic mitochondrial matrix peptidase chaperone subunit 
(CLCX) were associated with dementia (rs114713526, p = 
4.41 ×  10–7). This protein, along with other molecules, 
is involved in preserving mitochondrial health through 
degradation of misfolded proteins [63]. In males, asso-
ciation was also observed with a variant in the autism 
risk gene intellectual developmental disorder, autosomal 
dominant 26 (AUTS2) (rs17684339, p = 9.59 ×  10–8). The 
association with this variant was also observed in indi-
viduals with onset age less than 75 (p = 3.53 ×  10–7). Sev-
eral members of the A disintegrin and metalloprotease 
(ADAM) gene family have been linked to AD through 
genetic association and functional experiments. We iden-
tified a SNP in ADAM metallopeptidase with thrombos-
pondin type 1 motif 19 (ADAMTS19) that was associated 
with dementia in individuals with onset less than 75 years 
(rs67540991, p = 2.27 ×  10–7). ADAMTS19 has primarily 
been linked to cardiac phenotypes [64].

Strengths and limitations
This work had several strengths, including being the 
largest sample of AA individuals with genotypes and 
dementia diagnoses to be analyzed within biologically 
relevant strata, and in MVP, a control group with no 
reported parental dementia. Several limitations should 
also be noted. First, despite assembling the largest 
cohort of AA individuals with dementia diagnoses and 
genetic data, the overall power, especially after strati-
fication, is much lower than that of European ancestry 
meta-analyses. This study meta-analyzed results from 

three different dementia phenotypes: ADRD, AD, and 
parental proxy dementia. Although the statistical power 
obtained by combining these phenotypes was likely the 
reason we found novel associations, we are unable to 
determine whether they are AD-specific. Also, the MVP 
samples were phenotypes using EMR data and controls 
were not formally screened for dementia. Finally, two of 
the three GWS SNPs were relatively rare (MAFs greater 
than 1% but less than 3%), which increases the possibil-
ity that they are false positives. Larger AA GWAS stud-
ies may provide further evidence for these SNPs’ effect 
on AD risk in their respective strata.

Conclusions
These results highlight the benefits of studying ADRD 
genetics in non-EUR populations, as well as within bio-
logical/disease onset-defined subsets of cases due to 
the heterogeneity of dementia disorders. They suggest a 
distinct risk locus within the ABCA7 region, as well as 
novel risk loci near TSPEAR and EPHA5. In summary, 
this work provides evidence for novel dementia risk loci 
that are specific to individuals who are APOE-ε4 non-
carriers, females, and have an earlier age at onset (< 75 
years).
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