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Objective: Polygenic risk scores (PRSs) assess the individual genetic propensity to a condition by combining sparse
information scattered across genetic loci, often displaying small effect sizes. Most PRSs are constructed in European-
ancestry populations, limiting their use in other ethnicities. Here we constructed and validated a PRS for late-onset
Alzheimer’s Disease (LOAD) in Caribbean Hispanics (CH).
Methods: We used a CH discovery (n = 4,312) and independent validation sample (n = 1,850) to construct an ances-
try-specific PRS (“CH-PRS”) and evaluated its performance alone and with other predictors using the area under curve
(AUC) and logistic regression (strength of association with LOAD and statistical significance). We tested if CH-PRS
predicted conversion to LOAD in a subsample with longitudinal data (n = 1,239). We also tested the CH-PRS in an
independent replication CH cohort (n = 200) and brain autopsy cohort (n = 33). Finally, we tested the effect of ances-
try on PRS by using European and African American discovery cohorts to construct alternative PRSs (“EUR-PRS”,
“AA-PRS”).
Results: The full model (LOAD ~ CH-PRS + sex + age + APOE-ϵ4), achieved an AUC = 74% (ORCH-PRS = 1.51 95%
CI = 1.36–1.68), raising to >75% in APOE-ϵ4 non-carriers. CH-PRS alone achieved an AUC = 72% in the autopsy
cohort, raising to AUC = 83% in full model. Higher CH-PRS was significantly associated with clinical LOAD in the repli-
cation CH cohort (OR = 1.61, 95%CI = 1.19–2.17) and significantly predicted conversion to LOAD (HR = 1.93,
CI = 1.70–2.20) in the longitudinal subsample. EUR-PRS and AA-PRS reached lower prediction accuracy (AUC = 58%
and 53%, respectively).
Interpretation: Enriching diversity in genetic studies is critical to provide an effective PRS in profiling LOAD risk across
populations.
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Introduction
Genome-wide association studies (GWAS) have identified
hundreds of disease-associated loci in several complex diseases
such as late-onset Alzheimer’s Disease (LOAD), mostly single-
nucleotide polymorphisms (SNPs) characterized by small effect

sizes. The polygenic risk score (PRS)1 has the potential to
identify individual’s disease risk by combining sparse informa-
tion distributed across this large number of SNPs. PRS can
highlight at-risk individuals and allow for better diagnostic and
application of early intervention strategies.
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Several efforts to develop PRSs have been conducted
for LOAD2,3 or LOAD-endophenotypes,4 achieving good
sensitivity and specificity in detecting disease status, and
in improving the diagnostic algorithm in association with
well-established variables such as sex, age and APOE. PRS
leverages summary statistics derived from large GWAS
efforts (here referred as “training” or “discovery” dataset)5

to construct an informative predictive variable in an inde-
pendent dataset (“validation” dataset) phenotyped for the
same outcome or related endophenotypes. One major lim-
itation is that PRS performances are hindered when dis-
covery and validation datasets do not share the same
ancestral background. Most existing GWASs datasets have
focused on population of European descent,6 which limits
the incorporation of PRS in other race/ethnic groups, lim-
iting the generalizability across under-represented
populations. Indeed, earlier studies have used European
ancestry GWAS to construct PRS in other ethnic groups
due to a lack of large matching genetic studies7 with luke-
warm results.

In this study we developed a PRS using a large
Caribbean Hispanic (CH) dataset phenotyped for LOAD.
This population is an invaluable asset to investigate
LOAD because of their unique genetic background and
the high disease incidence and prevalence (two-fold that
of non-Hispanic Whites). To our knowledge, no rigorous
investigation for PRS within the Caribbean Hispanic pop-
ulation has been conducted so far.

Methods
Data analyzed were obtained from three studies recruiting
individuals of CH ancestry: (1) the Washington Heights
and Inwood Columbia aging project (WHICAP study);
(2) Estudio Familiar de Influencia Genetica en Alzheimer
(EFIGA) family study; (3) 10/66 Puerto Rico study
(10/66 PR). WHICAP8 is a Northern Manhattan based
community-based study of randomly selected elderly indi-
viduals of three ethnic groups: non-Hispanic whites,
Caribbean Hispanics and African American. EFIGA9 is a
family-based study recruiting families with at least two liv-
ing relatives with dementia history as well as sporadic
LOAD cases and healthy controls. 10/66 PR is part of the
large 10/66 consortium (it refers to the 66% people with
dementia that reside in the developing nations with less
than one-tenth of the population-based research con-
ducted in those settings). The 10/66 study is led by King’s
College London, recruits people over the age of 65 and is
conducted in several countries10,11 focused mainly on
lower-income economies.

Informed consent was obtained from all participants.
For the WHICAP and EFIGA, the study protocol was

approved by the Institutional Review Board (IRB) of
Columbia university Medical Center (CUMC). The study
protocol for the 10/66 PR population-based study and the
consent procedures were approved by the King’s College
London research ethics committee and University of
Puerto Rico, Medical Sciences Campus Institutional
Review Board (IRB). The study was conducted according
to the principles expressed in the Declaration of Helsinki.

Diagnosis of Probable/Possible AD
For EFIGA and WHICAP, LOAD diagnosis was carried
out according to the National Institute of Neurological
and Communication Disorders and Stroke–Alzheimer’s
Disease and Related Disorders Association (NINCDS-
ADRDA).12 For 10/66 PR, diagnosis of dementia was
assigned according to 10/66 protocol.13 Sex and age (age
at onset for incident cases, age at baseline for prevalent
cases, age at last evaluation for cognitive healthy controls)
were used as main covariates in all statistical models.

Genotyped QC and Imputation
Genotyped data were cleaned with standard QC measures
using PLINK (v1.9).14 In brief, SNPs were excluded if
MAF≤1%, Hardy–Weinberg equilibrium p value<1-E06
and imputation “INFO” quality <40%; individuals were
removed if genotype missingness ≥2%. Data were imputed
employing the Haplotype Reference Consortium reference
panel15 as described earlier.16 Supervised global ancestry
analysis was conducted using ADMIXTURE tool17 using
data from the Human Genome Diversity Project
(HGDP)18 which comprised Europeans (n = 70), Afri-
cans (n = 104) and Native Americans (n = 64) as surro-
gates of respective ancestry. Individuals that failed to meet
criterion of three-way admixture were culled from analy-
sis (ie, showing ≤1% of each European, African and
Native American ancestry). Principal component
(PC) analysis was conducted using the king software to
account for variance in population stratification. We
selected PCs to be included in sub-sequential models
based on stepwise regression. We excluded from analyses
those individuals that deviated �6 standard deviations
from the mean.

Training and Validation Samples
Starting from the entire CH cohort (n = 8,819) that
include both sporadic cases and controls as well as large
family pedigrees, we selected an unrelated sub-sample
(n = 6,162) using the software king (v 2.2.4).19 Subse-
quently, individuals were randomly assigned to an inde-
pendent training and validation datasets (70%:30% ratio).
The training sub-sample (n = 4,312) was used to perform
a traditional genome-wide association study (GWAS)
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using a generalized mixed model with LOAD as an out-
come and first three PCs, sex, age and genetic relationship
matrix (GRM) as fixed and random effects, respectively.
GRM was constructed using the GEMMA software
(v0.98).20 GWAS analyses were conducted employing the
GMMAT (v1.1)21 R package. Genomic inflation was cal-
culated using median χ2 statistics. Schematic representa-
tion of analysis pipeline is shown in Fig 1.

PRS Construction and Evaluation of Performance
We used the PRSice software (v 2.3.2)22 to construct the
CH-PRS. Analyses were conducted with standard parame-
ters, where SNPs were LD-clumped (�-clump-kb 250 –

clump-r2 0.1 –clump p1) and filtered out if minor allele
frequency (MAF) < 1%. Analyses were conducted on
autosomal chromosomes. We included the first three PCS
and removed the APOE region (1 MB around index
SNPs) from CH-PRS calculation and treated APOE as an
independent covariate when modeling LOAD prediction
performance. Details about PRSice bioinformatics code
can be found on GitHub (https://github.com/sariya/
CUMC_taub/tree/master/PRS_CH).

We estimated the area under the curve (AUC)23 to
evaluate PRS’s accuracy in the validation dataset to iden-
tify predictive ability, with values ranging from 50 to
100%, where 50% is random classification and 100% is
perfect classification. We also used regression models to
study significance and strength of association between
PRS and LOAD or other endophenotypes.

We tested three main statistical models:

1. LOAD ~ CH-PRS (“model A")
2. LOAD ~ CH-PRS + APOE locus (e4 and/or e2

alleles) (“model B")
3. LOAD ~ CH-PRS + APOE locus + sex + age (“full

model”)

We also computed the maximal possible predictive power
(AUCmax) according to disease prevalence and heritability
of LOAD. AUCmax is the maximum AUC that could be

achieved for a disease when the test classifier is a “perfect”
predictor of genetic risk and was computed using the
approach proposed by Wray and colleagues,24 and
implemented in their online calculator. We tested three pos-
sible heritability scenarios according to published data25 in
tandem with the disease prevalence as reported in.26

As secondary analyses, we tested PRS performances
by cohort strata: (1) APOE-Ɛ4 status (carrier vs non-car-
rier); (2) sex (men vs women); and in the entire CH cohort
(ie, including discovery + validation + related individuals);

AUCs obtained across models were compared using
the roc.test function in pROC (R library) (bootstrap
method).

Due to three-way admixed nature of the CH popu-
lation (European, African, and Native American ancestry),
we sought to assess the role of ethnicity and its effect on
PRS performance. To do so, we built two alternative PRSs
using European (EUR)27 and African American (AA)28

GWAS as discovery datasets (from here on labeled as
“EUR-PRS” and “AA-PRS”). EUR-PRS and AA-PRS
were constructed with identical LD clumping and SNP fil-
ters. In addition, the first three PCs were used to generate
the PRS. APOE region (1 MB around index SNPs) was
excluded. We then compared their performances with that
achieved by our original CH-PRS again using the roc.test
R function.

PRS Replication
We used an in-house script to re-construct PRS using the
SNP list prioritized by PRScise and test its association
with LOAD in two different scenarios:

1) the ADC dataset (n = 200), a small CH cohort,
part of the Alzheimer’s disease centers (ADC-CH). The
NIA ADC cohorts include patients and controls
ascertained and evaluated by the clinical and neuropathol-
ogy cores of the 39 past and present NIA-funded
Alzheimer’s Disease Centers (ADC). Data collection is
coordinated by the National Alzheimer’s Coordinating
Center (NACC). NACC coordinates collection of

FIGURE 1: Schematic representation of the analyses pipeline.
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phenotype data from the ADCs, cleans all data, coordi-
nates implementation of definitions of AD cases and con-
trols, and coordinates collection of samples. Biological
specimens are collected, stored, and distributed by the
National Cell Repository for Alzheimer’s Disease
(NCRAD).29 Data comprised 102 controls (51%),
135 women (67.5%); the mean (�standard deviation) age
of cases and controls was 72 � 7 and 73 � 7,
respectively.

2) a small CH cohort (n = 33) with brain autopsy
data.30 Braak staging31,32 and neuropathological diagnosis
of AD33 were used as main outcomes. Detailed descrip-
tion of the CH autopsy cohort can be found elsewhere.30

Briefly, the autopsy brains were ascertained from the brain
bank of the Alzheimer’s Disease Research Center
(ADRC). Neuropathological evaluation is also reported
elsewhere.34,35 Neurofibrillary tangles and neuritic plaques
were assessed using hematoxylin–eosin and the modified
Bielschowsky. Participants that met the criterion of Braak
stage ≥4 neurofibrillary pathological, and also the CERAD
neuropathological criteria36 (ABC score for intermediate/
high) were deemed as cases. We used the clm and glm R
functions to test association between PRS and Braak stag-
ing and AD pathological diagnosis, respectively. Data
comprised 16 controls (48.5%), 21 women (63.6%); the
mean (�SD) age of cases and controls was 79 � 10 and
67 � 12, respectively.

Longitudinal Analyses
We used a Cox proportional hazards analysis37

implemented in the survival R package to test the CH-
PRS performance in predicting conversion from cognitive
healthy to LOAD status over time. We restricted our anal-
ysis to the EFIGA study only and selected individuals with
at least one year of follow up, retaining incident cases and
healthy controls only. CH-PRS was entered as a main pre-
dictor with age at baseline, sex and APOE-ϵ4 status as
covariates. CH-PRS was modeled as continuous variable
and also binned in quartiles for graphical representation.
We also tested a mixed effects Cox regression model using
the coxme R package to account for relatedness between
individuals. Finally, we conducted sensitivity analyses
restricted to those EFIGA individuals that were part of the
validation sample only; because of the small sample size
and low number of conversion events, CH-PRS was
binned in tertiles.

Results
Random split of unrelated samples resulted in 4,312 indi-
viduals assigned to discovery dataset and 1,850 to the vali-
dation dataset. We found no significant differences in sex,
APOE or age distribution between discovery and

validation dataset (χ2 p = 0.48; χ2 p = 0.99; t-test
p = 0.32, respectively) (Table 1 shows sample
demographics).

Discovery Dataset GWAS
In the discovery dataset, we did not identify genome-
wide significant signals besides APOE locus (rs429358,
p = 4.51E-15). No significant genomic inflation was
observed (λ = 1.01). Fig 2 shows Manhattan plot
(APOE region was removed as previously discussed in
Methods).

CH-PRS Performance
PRSice generated a PRS using 146,608 SNPs with an
optimal p-value threshold = 0.3. AUC in validation set
was found to be 62.21% (model A) while logistic regres-
sion found a significant association between CH-PRS and
LOAD (p < 0.001, OR = 1.53, CI = 1.38–1.69). In
model B, we achieved an AUC = 63.43% (p < 0.001,
OR = 1.52, CI = 1.38–1.68). The full model achieved
an AUC of 74.02% (p < 0.001, OR = 1.51, CI = 1.38–
1.68). Details can be found in Table 2. As a reference, we
show in the last column the published AUCs computed
in non-Hispanic Whites (NHW; the International Geno-
mics of Alzheimer’s Project [IGAP] study27) When ROCs
were compared among different statistical models (eg,
those including age, sex without and with PRS as predic-
tors), we observed that including the CH-PRS signifi-
cantly improved the AUC (p = 3.82E-04). Fig 3 shows
comparison of ROC before and after PRS addition to the
covariates.

AUCmax estimates ranged from 75 to 83%, according
to published prevalence and heritability estimates. All scenar-
ios are presented in Table 3.

CH-PRS Performance in Autopsy Cohort
In the autopsy cohort, we found that higher CH-PRS
scores were significantly associated with higher odds of a
pathological AD diagnosis (Model A: AUC = 72.06%;
OR = 2.34, CI = 1–5.51, p = 0.05) as well as with
higher Braak staging (p = 0.06; OR = 1.83 CI = 0.97–
3.45). When the full model was tested, we achieved an
AUC = 83.09% (OR = 2.34, CI = 0.95–6.91,
p = 0.08). Fig 4 shows CH-PRS scores in cases
vs. controls.

Secondary Analyses
Stratified analyses in APOE-Ɛ4 carriers (n = 568) and
APOE-Ɛ4 non-carriers (n = 1,276) showed that PRS per-
formed better at trend (bootstrap p = 0.08) in the latter
(full model: AUC = 75.33%; OR = 1.61, CI = 1.41–
1.84, p < 0.001) as compared to the former (full model:
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AUC = 69.78%; OR = 1.34, CI = 1.12–1.61,
p = 1.16E-03). No significant differences were observed
in sex-strata (bootstrap p = 0.7).

CH-PRS AUC in the full cohort (discovery set +

validation set + related individuals initially excluded;
n = 8,819) reached 78.9% in Model A, and 85.5% in
the full model. APOE-stratified analyses mirrored findings
as above, where PRS performed better Ɛ4 non-carriers
(n = 5,688; Model A: AUC = 79.64%; OR = 1.28;
CI = 1.26–1.29 p < 0.001) than carriers (n = 3,065;
Model A: AUC = 78.30%; OR = 1.27; CI = 1.25–
1.29, p < 0.001).

Survival Analyses
Analyses were conducted in 1,239 individuals (913 cen-
sored and 326 conversion events). We found CH-PRS
significantly associated with conversion from healthy cog-
nition to LOAD. In model adjusted for sex, age at

baseline (Surv(time, LOAD) ~ sex + age at baseline
+ CH-PRS) we observed a 94% increase in the expected
hazard for CH-PRS (p < 0.001, HR = 1.94, CI = 1.71–
2.21). Results were confirmed adding APOE-ϵ4 and
APOE-ϵ2 to the model (p < 0.001, HR = 1.93,
CI = 1.70–2.20). When CH-PRS was binned in quar-
tiles, we observed increasing HRs for higher quartiles,
keeping the first one as reference (fourth quartile
HR = 4.34, CI = 2.98–6.32, p < 0.001) (Fig 5). Results
obtained with the mixed effect Cox regression test over-
lapped to those presented above.

Sensitivity analyses included individuals that were
part of the validation sample only (n = 177, 40 conver-
sion events). Because of the small sample size, instead of
quartiles, CH-PRS was binned in tertiles, with the higher
one significantly predicting conversion to LOAD (Surv
(time, LOAD) ~ sex + age at baseline + CH-PRS,
HR = 2.25, CI = 1.02–4.94, p = 0.043).

Table 1. Demographics for Caribbean Hispanics (CH) in Validation and Discovery Cohort. “SD” Represents
Standard Deviations

Dataset EFIGA WHICAP 10/66 Puerto Rico

Validation n 967 478 405

Cases 491 233 35

Controls 476 245 370

Age (mean � SD) 74.6 � 8.7 80.0 � 6.7 75.1 � 6.9

Sex, n (%)

Female 662 (68.4) 326 (68.2) 273 (67.4)

APOE

Ɛ4- 609 364 303

Ɛ4+ 356 114 98

missing 2 0 4

Discovery n 2272 1054 986

Cases 1144 552 72

Controls 1128 502 914

Age (mean � SD) 74.0 � 8.8 79.9 � 6.7 75.9 � 7.1

Sex, n (%)

Female 1532(67.4) 711 (67.4) 655 (67.4)

APOE

Ɛ4- 1422 786 762

Ɛ4+ 843 266 210

missing 7 2 14
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PRS in ADC-CH
PRS constructed in CH-ADC was significantly associated
with LOAD (OR = 1.60. CI = 1.19–2.17, p = 1.97E-03)
with an AUC = 63.59%. We observed the best AUC in the
full model (67.25%; OR = 1.56, CI = 1.12–2.18,
p = 8.32E-03).

PRS Using European and African American
Discovery Cohorts
Using IGAP GWAS as a discovery dataset, we constructed a
new EUR-PRS in the CH validation sample: the optimal
model included 97,875 SNPs (p-value threshold = 0.5) and
obtained an AUC = 58.47% (CI = 55.84–61.10)
(OR = 1.34, CI = 1.22–1.48, p = 9.39E-10). Using the AA
GWAS, we obtained a new AA-PRS that included 15 SNPs
(p-value threshold = 1E-05) and reached an AUC = 53.23%
(CI = 50.62–55.85) (OR = 1.10, CI = 1.00–1.21, p
= 4.03E-02).

When these two PRS were compared to the CH-PRS,
we observed that CH-PRS was superior to both the EUR-
PRS (p = 0.04) and the AA-PRS (p < 0.001), although the
first instance does not survive after multiple testing correction.

Nevertheless, when we used the CH-PRS and EUR-
PRS in Cox regression models, with or without restricting
the analyses to the validation sample only, we observed

that neither the EUR-PRS nor the AA-PRS significantly
predicted conversion from cognitive healthy to LOAD
(eg, Surv(time, LOAD) ~ sex + age at baseline + EUR-
PRS, HR = 0.75, CI = 0.32–1.73, p = 0.5).

Discussion
To our knowledge, this is the first PRS developed in
Caribbean Hispanics for LOAD. We showed a good
prediction accuracy when combined with other well-
established risk factors such as age, sex and APOE, compa-
rable to those reported in larger studies of European
ancestry. Adding the PRS to these risk factors significantly
improved accuracy and we were able to demonstrate the
strong association between higher PRS scores and neuro-
pathological features in an independent CH autopsy
cohort. We also replicated such association in an indepen-
dent case-control CH cohort and showed that PRS signifi-
cantly predicts conversion from healthy status to LOAD.

Most PRS have been developed and validated in
NHW populations2 with reasonable prediction values.
These PRS also showed optimal performance in predicting
conversion from a healthy status to AD,38 or association
with LOAD-endophenotypes.39 Our empirical AUC in
the model combing the PRS and APOE reached a 64%

FIGURE 2: Manhattan plot for genome-wide association analysis using the CH discovery sample. On the X-axis are represented
chromosomes; on the Y-axis -log (p-value). [Color figure can be viewed at www.annalsofneurology.org]
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prediction accuracy, lower than what was observed in
NHW (AUC = 71.7%) or the estimated AUCmax

(75–83%, depending on age strata). Two aspects need to
be considered to explain this discrepancy:

First, in NHW the APOE genotype alone reaches an
AUC = 68.3%: in other words, a large part of diagnosis
accuracy derives from the APOE locus. This represents the

largest difference between NHW and our study, where
the APOE-ϵ4 allele reaches a lukewarm AUC = 55%.

Second, in NHW, the addition of the PRS to the
APOE locus little improves the overall prediction accuracy
(AUC = 68.3% vs AUC = 74.5%, respectively). The
addition of the 20 genome-wide associated loci to APOE
further reduced this gap (AUC = 72% vs AUC = 74.5%,
respectively). Consequently, much of the model perfor-
mance can be attributed to APOE and the genome-wide
top-loci only. On the contrary, in our study we observed a
much larger improvement for the APOE + PRS model
compared to the one with APOE alone (AUC = 64% vs
AUC = 55%).

The lower AUC in Hispanics for APOE is not sur-
prising because of the weaker effect of APOE in admixed
populations compared with NHW. For example, African
Americans are 1.4 times more likely to carry the ε4 allele
than NHW, yet the APOE effect size is lower and compa-
rable to that of other loci (eg, ABCA7).28 Indeed, other
genetic loci not yet identified could explain the discrepancy
between the theoretical prediction accuracy (AUCmax) and
the observed AUC for our CH-PRS. The contribution of
rare variants is not captured by traditional PRSs, which are
constructed over common variants. Rare variants could play
a larger role in CH than in NHW. The frequency of
underlying genetic risk variants varies substantially between
populations and admixed groups (such as CH and AA) are
enriched with rare variants.40 Higher degree of genetic vari-
ability for admixed populations is well-established: recent
studies have shown that the number of variants per genome

FIGURE 3: Receiver operating characteristic (ROC) curve
analyses for distinguishing LOAD group from cognitive
healthy control group in the CH validation dataset.

TABLE 2. Polygenic Risk Score (PRS) in the CH validation Sample; AUC Represents Area Under Curve Shown in
Percentage (%); for Logistic Regression Models We Report Confidence Interval (CI) and Odds Ratio (OR). Last
Column Shows AUCs Reported in IGAP PRS Paper [2]

CH
validation model AUC (%) OR 95% CI P-value

IGAP
AUC (%)

Entire
sample

LOAD ~ APOE-Ɛ4 55.0 1.60 1.31–1.96 3.31E-06 68.3

LOAD ~ PRS 62.2 1.53 1.38–1.69 <1E-16 Not
reported

LOAD ~ PRS+ APOE-Ɛ4 + APOE-Ɛ2 63.4 1.53 1.38–1.68 <1E-16 74.0

LOAD ~ PRS + APOE-Ɛ4 + APOE-
Ɛ2 + sex + age

74.0 1.51 1.36–1.68 1.75E-14 78.2

APOE-Ɛ4- LOAD ~ PRS + sex + age 75.3 1.61 1.41–1.84 1.25E-12 Not
reported

APOE-Ɛ4+ LOAD ~ PRS + sex + age 69.8 1.34 1.12–1.61 1.16E-03

Men LOAD ~ PRS + APOE-Ɛ4 + age 72.4 1.58 1.32–1.92 7.62E-07

Women LOAD ~ PRS + APOE-Ɛ4 + age 74.8 1.47 1.29–1.67 3.95E-09
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is higher among individuals of African ancestry (�5 million
variants) compared with individuals of East Asian,
European, or South Asian ancestry (�4 million variants).
Consequently, populations carrying a significant proportion
of African genome (such as CH) will have a greater variabil-
ity in the number of variants. CH also carry a significant
proportion of Amerindian genome. Populations of indige-
nous ancestry in the Americas show exacerbated genetic
divergence due to extreme isolation and serial founder
effects, leading to an increased fraction of population-spe-
cific variation.41

PRS performance in APOE-ϵ4 non carriers showed
even higher AUC in the full model (~75%), which is very
close to prediction accuracy obtained in NHW. Thus,
while the APOE locus has poor prediction accuracy by
itself, it still contributes to heterogeneity of the genetic
risk profile in CH. Furthermore, prediction accuracy
could be hampered by the heterogeneity in LOAD defini-
tion and differential contribution of concomitant condi-
tions across ethnic groups. For example, it is well

established that cardiovascular and cerebrovascular condi-
tions are strongly associated with LOAD and improve dis-
ease prediction (Brickman and Tosto, 2019). Indeed,
these conditions have higher incidence and prevalence in
Hispanic populations compared to NHW.

PRS performance appears even more compelling in
the brain autopsy cohort with an associated AUC = 72%,
which increases to 83% in the full model. The observed
AUC is therefore close to the estimated AUCMAX (75–
83%) and comparable to the higher accuracy observed in
NHW autopsy cohorts: a recent investigation conducted
in a large pathological case-control series (part of the
IGAP study) reported a predictive AUC = 84% for the
PRS.42 This AUC is even higher than the theoretical max-
imal genetic variance (AUCmax ~ 82%), indicating that in
NHW the PRS: (1) captures almost entirely the genetic
component of LOAD; and (2) genetic prediction is better
in autopsy-confirmed case–control series than clinical
ones. Similar findings were reported in other NHW
studies,38 where PRS and APOE along with gender and
age at death produced a final AUC = 82.5%. Again, in
NHW the APOE genotypes alone showed a predictability
of 81.8%. Results observed in autopsy samples suggest
that the accuracy of clinical diagnosis could explain the
lower AUC performances in clinical samples.

Alternative PRS constructed in our CH validation
sample using NHW or AA discovery GWASs confirmed
the importance of wider representation in genetic studies
and ethnic-specific pipelines implementation. Despite our
CH-PRS being generated using a smaller discovery GWAS
(~ 4,000), its performance was comparable if not superior
to the one generated using IGAP, a dataset approximately
15 times bigger. Notably, survival analyses showed that
only the CH-PRS was significantly associated with conver-
sion to LOAD, whereas the EUR-PRS did not show any
significant association. Although CH carry a significant
proportion of European and African descent genome
(56% and 35%, respectively) the unique admixture of
CH limits the use of other ethnic groups to construct an
efficient PRS. Furthermore, better performance of the

TABLE 3. AUCmax (%) Stratified by Age Group Along With Heritability Estimates According to Wray and
Colleagues Online Calculator

Age group Disease prevalence (%)

AUCmax

Heritability = 38.9% Heritability = 34.8% heritability = 28%

64–74 10 83 82 79

75–84 20 81 79 76

>85 30 80 78 75

FIGURE 4: Box plot for CH-PRS in the autopsy sample. On
the X-axis are represented cases and controls, Y-axis
represents CH-PRS scores. [Color figure can be viewed at
www.annalsofneurology.org]
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EUR-PRS compared to the AA-PRS (AUC = 58% vs
53%) could have two explanations: (1) CH have higher
European ancestry than African ancestry, therefore the
NHW GWAS better captures the risk profile and the allele
frequencies of our target CH cohort (although AA show as
well a significant proportion of European ancestry
[~20%]); (2) the NHW GWAS is better powered than the
AA GWAS (~74,000 vs ~6,000) which could explain the
better performance of the EUR-PRS. Consequently, higher
representation of Hispanics and AA is needed to obtain
consistent comparisons across ethnicities.

Strengths and Limitations
The replication of our findings indicated that CH-PRS
was significantly associated with higher likelihood of
LOAD diagnosis in the ADC-CH cohort. This is highly
relevant as the ADC study is independent from our CH
samples in terms of recruitment sites, demographic distri-
bution, ascertainment methods etc. Furthermore, the
effect sizes observed for the newly-developed CH-PRS are
highly comparable (OR = 1.61 vs OR = 1.51 in ADC-
CH vs our study, respectively). Validation in an indepen-
dent brain autopsy cohort and in a sub-sample with longi-
tudinal data are additional strengths.

We used the AUC throughout our investigation as it
is an established measure for determining the efficacy of
tests in correctly classifying diseased and non-diseased

individuals and to compare our findings to those of previ-
ous studies. Nevertheless, AUCs have been shown to be
misleading and are problematic as comparative measures
across studies.43

This study has limitations. First, the sample sizes
of both our CH validation and replication datasets
(CH-ADC and the brain autopsy datasets) are relatively
small, which may underestimate the observed AUCs.
In addition, we did not have a third large independent
CH sample to carry out heritability estimates, thus the
decision to use published data to compute the
AUCmax. Independent cohorts for replication in
non-European descent populations are often difficult to
obtain because of the limited number of such cohorts
with available genetic data. In particular, autopsy cases
are extremely rare, as Hispanics tend to not participate
in either organ donation in general, or brain donation
more specifically, to the same extent as non-Hispanic
Whites.44

Second, GWAS summary statistics that are publicly
available for AA comprised a significantly smaller sample size
compared to the NHW GWAS, hence, it remains to be
investigated if the poorer AA-PRS performance should be
attributed to its smaller sample size or it is truly due to a
lower AFR admixture component in the CH population.

Third, although the PRS in the full cohort reached
optimal AUC (>85%), this model includes individuals

FIGURE 5: Survival plot for CH-PRS (binned in quartile). [Color figure can be viewed at www.annalsofneurology.org]
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that are part of both the discovery and validation sub-sam-
ples, as well as other related individual initially excluded
from analyses. This results in an overfitting model that
could overestimate the true PRS’s sensitivity and specific-
ity. The EFIGA sub-sample used for survival analyses is
also part of both the discovery and validation samples:
despite the already discussed risk of overfitting, it has to
be noted that in this case the outcome is different (ie, time
to conversion vs. LOAD in our main analysis). Neverthe-
less, when analyses were restricted to validation sample
only, we confirmed the validity of our results.

Lastly, our CH-PRS focused on common variants
which, with the exception of APOE, are usually proxies
for the causal (rare) variants. Future studies should evalu-
ate the contribution of rare variants in PRS performances,
possibly deploying them based on their deleterious nature.
Recent strategies have focused on constructing PRS using
rare variants, which could be particularly useful in
admixed populations.45 Alternative approaches have relied
on population prediction at the gene level rather than the
single polymorphism since the effect of genes on traits is
likely to be more highly conserved across ethnicities. This
approach converts SNP’s effect sizes in predicted transcript
abundance46 resulting in a polygenic transcriptome risk
scores.
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