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Abstract The goal of this paper is to review my current un-
derstanding of the concepts of cognitive reserve (CR), brain
reserve and brain maintenance, and to describe our group’s
approach to using imaging to study their neural basis. I present
a working model for utilizing data regarding brain integrity,
clinical status, cognitive activation and CR proxies to develop
analyses that can explore the neural basis of cognitive reserve
and brain maintenance. The basic model assumes that the
effect of brain changes on cognition is mediated by task-
related activation. We treat CR as a moderator to understand
how task-related activation might vary as a function of CR, or
how CR might operate independently of these differences in
task-related activation. My hope is that this presentation will
spark discussion across groups that study these concepts,
allowing us to come to some common agreement on defini-
tions, methodology and approaches.
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The goal of this paper is to review my current understanding
of the concepts of cognitive reserve (CR), brain reserve (BR),
and brain maintenance (BM), and to describe our group’s
approach to using imaging to study their neural basis.
Epidemiologic and imaging evidence strongly suggest that
CR moderates the clinical impact of age-related brain changes
or Alzheimer’s disease (AD) pathology. Our working

hypothesis is that CR operates through individual differences
in how tasks are processed in the brain. In addition, our work
incorporates the concept of BR, in order to account for indi-
vidual differences in measures of integrity of the brain itself.
The concept of BR has taken on greater importance because of
increasing evidence that life exposures can reshape the brain
and maintain brain integrity, a process called BM.

Working definitions

The concept of CR refers to differences in cognitive processes
that explain differential susceptibility to functional impair-
ment in the presence of pathology. CR can therefore be con-
sidered an active model of reserve in that the brain actively
attempts to cope with brain damage by using pre-existing
cognitive processes or by enlisting compensatory processes
(Stern 2002). A set of lifetime experiences as well as other
factors may account for differences in CR across individuals.

On the other hand, the concept of BR suggests that struc-
tural characteristics of the brain provide resilience against
brain aging and pathology: either there is more brain to lose
in the face of pathology or atrophy, or the brain substrate
supports more elaborate neural networks. Colloquially, BR
might be considered the Bhardware^ while CR the
Bsoftware.^ Theoretically, BR encompasses all of the
Banatomic^ aspects of the brain and can be measured using
diverse techniques including imaging, proteomic measures,
and advanced neuroscience approaches. Practically, BR
might be measured by gray matter volume, cortical thick-
ness or white matter diffusivity.

We had initially characterized BR as a passive form of
reserve (Stern 2002) since it does not involve brain networks
that actively moderate differential performance at any given
level of BR. However, it is now recognized that life
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experiences help maintain brain integrity (for review see
Nyberg et al. (2012)). For example increased cognitive activ-
ity is associated with preserved whole-brain (Steffener et al.
2016) and hippocampal (Valenzuela et al. 2008) volume.
Also, the brain is much more plastic than once imagined;
exposures such as exercise are associated with increased total
(Colcombe et al. 2006) and hippocampal (Maguire et al. 2000)
volume. Interestingly, studies in mouse models suggest in-
creased physical activity may be associated with reduced am-
yloid load (Adlard et al. 2005). These observations impart
new dynamism to BR and its implications for successful aging
and reduced incidence of dementia.

Thus, an important accompanying concept is BM. BM re-
fers to the observation that that some people maintain their
brains (or their BR) more successfully than do others. Some of
the same life exposures associated with differential CR have
also been found to be active in BM.

Our research scheme: cross sectional version

A schematized approach for studying these concepts in cross-
sectional data, is summarized in Fig. 1a. The figure includes
current status of the brain, clinical outcomes including cogni-
tive performance or disease status, and CR. These are the key
features needed to characterize CR, since CR is posited to
moderate the relationship between the status of the brain and

clinical status. The figure also adds a box for task-related
activation, which we would like to use to understand the neu-
ral implementation of some aspects of CR. The measures used
for CR will be discussed below.

In Fig. 1a, the current status of the brain is characterized by
measures of brain morphology and integrity, as well as AD
pathology. Our cross-sectional model incorporates BR but not
BM, because BM cannot be directly observed in cross-
sectional data. In our studies, we try to incorporate as many
imaging modalities as possible to characterize the status of the
brain. These include measures of brain volume and cortical
thickness, white matter integrity, resting cerebral blood flow
and white matter hyperintensity burden. We are acquiring
measures of resting BOLD networks, such as those associated
with the default mode network. It is an open question whether
these networks belong in our characterization of the status of
the brain, or should be more accurately considered neural
along with fMRI data as components of the neural implemen-
tation of CR. We also acquire measures of AD pathology,
since this pathology is so common in healthy functioning
elderly adults. Thus, one might consider the current status of
the brain in the figure to be a representation of BR plus any
impinging pathology that is present.

Clinical status is represented by performance on neuropsy-
chological tasks and cognitive tasks used in fMRI studies, as
well as by potential clinical diagnoses such as MCI or demen-
tia. Path c represents the idea that at least a portion of cognitive

Fig. 1 Cross-sectional (a) and longitudinal (b) models for studying
cognitive reserve (CR), brain reserve (BR) and brain maintenance
(BM). The models are discussed in-depth in the text. Letters are for
identification only and do not have any mathematical significance.
Figure 1a assumes that measures of brain morphology, integrity or pa-
thology impact clinical status via path c. CR is represented by the red box;
working measures of CR include CR proxies or identified CR brain net-
works. We consider both the brain measures and CR to be influenced by
age, genetics and life experiences. CR is assumed to moderate the effect
of brain status on clinical status, thus producing individual differences in
the clinical correlates of a given level of BR and brain pathology. We are
attempting to use task-related network expression to better understand the

neural implementation of cognitive reserve. We assume that the effect of
brain status on clinical status is mediated in part by brain networks cap-
tured during task related activation (paths a and b). Path d suggest that CR
might moderate between brain status and activation such that given a
certain level of brain integrity, some people’s task related activation might
differ as a function of CR in informative ways. Path e recognizes that
some aspects of CR might not be captured in specific task-related activa-
tions, but still might moderate between brain and clinical function.
Figure 1b extends this model to longitudinal observations. Two key ad-
ditions are path f, which can assess how CRmoderates the effect of brain
change on cognitive change, as well as path g, which addresses the con-
cept of BM
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performance and clinical status can be accounted for by mea-
sures of brain morphology and integrity. Implicit in this is that
the effect of age on cognition is partially mediated by these
brain measures.

Typically, we measure CR via a set of proxies. Our selec-
tion of proxy measures for CR is based on epidemiologic
evidence that factor is independently associated with more
successful cognitive aging and/or reduced risk of incident de-
mentia. Potential proxies for CR include 1) educational attain-
ment; 2) current or estimated premorbid IQ; 3) measures as-
sociated with lifetime occupation; 4) lifetime participation in
cognitively stimulating activities; 5) participation in leisure
activities, 6) physical activity and exercise, and 7) social en-
gagement. Each proxy can contribute unique information in
these models, just as they contribute unique Bprotection^ in
epidemiologic models in the form of reduced risk of dementia
of slowed cognitive decline with aging. Below, we discuss
alternate, more direct measures of CR, including residual mea-
sures and generic or task-independent CR networks.

We consider both current BR and CR to be functions of
age, genetics and past life exposures. In fact, the same life
exposures listed as proxies for CR may also contribute to
BM, though probably with differing levels of importance.

One key assumption underlying our investigation of the
neural basis of CR is that the relationship of brain integrity
to a specific aspect of cognition can be mediated by the un-
derlying cognitive networks that are responsible for
performing that function. Thus, we include expression of
task-related networks in our model. We can then begin to
ask important questions like: BCan the effect of differences
in BR on cognitive performance be mediated by differences
in the pattern or degree of task-related activation?^ This me-
diation is represented by paths a and b.

By definition, we and others (Jones et al. 2011; Bennett
et al. 2003) consider CR to moderate the impact of brain
changes or pathology on clinical status; i.e. CR affects the
relationship between structure and cognition, rather than me-
diating between them. With two separate brain measures, gray
matter volume ROIs (Steffener et al. 2014a) and a covariance
measure summarizing fractional anisotropy (FA) in white mat-
ter tracts (Gazes et al. 2016), we found that a CR proxy mod-
erated the relationship between brain and cognition such that
given a certain gray matter volume or diffusivity status, indi-
viduals with higher CR performed better on cognitive tasks.
This suggests that individuals with higher CR are making
Bbetter use^ of the neural resources available, consistent with
the idea of neural reserve as described below. With fMRI
analyses, we can investigate how this CR moderation might
result in differential brain activity; these individual variations
in network activity may in turn mediate the effect of brain
change on cognition. Our use of CR proxies as moderators
in our analytic models thus allows us to identify these brain
network differences.

In Fig. 1a, we posit that CR could operate as a moderator
that supports task-related network expression in the presence
of brain changes or pathology (path d). As discussed below,
the moderating effect of CR could be reflected in more resil-
ient or flexible cognitive networks. For example, given the
same degree of focal volume loss in a network important for
working memory, we have noted that individuals with higher
IQ have higher network efficiency (Stern et al. 2003). The
great majority of our studies of the neural implementation of
CR have used this approach. However, even if brain changes
do impair specific task-related networks, CR could moderate
the effect of these changes on performance or clinical out-
comes in a manner that is independent of task-related activa-
tion. This moderation might be reflected by the presence of
task-invariant networks whose expression is correlated with
CR. This possibility is reflected in path e. Implementation of
this cross-sectional model is discussed in more detail below.
Subsequently, we discuss how the model can be extended to
incorporate longitudinal data.

Exploration of the neural implementations
of cognitive reserve

CR implies that some aspects of genetics, experience and life-
style impart differential susceptibility to underlying age- and
disease-related brain changes. CR can be defined as the resil-
ience or plasticity of cognitive networks in the face of disrup-
tion. To yield insights into the neural implementation of CR,
we can use task-based fMRI studies to characterize how the
functioning brain adapts to these physical brain changes in
order to maintain cognitive performance. I have suggested
several ways in which CR can be neurally implemented
(Stern 2009).

Neural reserveThe concept of neural reserve posits that inter-
individual variability in the brain networks that underlie task
performance of the healthy brain might cause some people to
be more capable than others of coping with the demands im-
posed by brain changes or pathology. In research applications,
some, but not all, aspects of neural reserve would be observed
in the box labeled Btask related network expression^ in
Fig. 1a.

One facet of neural reserve that has been systematically
explored is differential network efficiency and capacity. In this
context, a more efficient network will show less activation in
order to produce the same (or higher) level of performance.
We realize that other, more computational, definitions of effi-
ciency have been used, but refer here to this simpler concept of
efficiency. Capacity can be characterized by the maximal abil-
ity to activate a network as cognitive tasks become very de-
manding. We have demonstrated that a person with higher
proxy measures of CR, such as higher IQ, shows patterns of
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task-related activation that are more efficient and have higher
capacity (Habeck et al. 2003, 2005; Stern et al. 2003). We
have also demonstrated that given a certain degree of brain
change, e.g. volume loss, individuals with higher CR can
maintain greater network efficiency (Steffener et al. 2009).

Neural reserve also incorporates the idea of greater network
flexibility. Some individuals may have more flexible or varied
approaches to any particular cognitive activity. This again
could result in being better able to withstand brain changes
or pathology. Network flexibility is more difficult to ascertain
with imaging approaches since it requires the ability to detect
individual differences in the utilization of the at least two
different networks that underlie flexibility. Without a priori
knowledge of these networks, this variability typically could
not be detected. We have been using cognitive experimental
approaches, such as paradigms that test flexibility in problem
solving, to explore this aspect of CR (Barulli et al. 2013).

In pursuing the neural instantiation of neural reserve with
fMRI studies, we have often reported age-related differential
increases in activation with increasing task load, consistent
with efficiency/capacity differences (Stern et al. 2012), and
have explored networks that were differentially sensitive to
increasing task demand used during working memory tasks
(Blumen et al. 2011).We have thoroughly modeled the impact
of brain volume changes and the moderating effect of CR
using our Letter Sternberg (LS) task (Steffener et al. 2009,
2011; Steffener and Stern 2012). Similarly, using an executive
task we have noted age-related losses in network efficiency
(Gazes et al. 2012, 2015) that mediate between age and task
performance (Steffener et al. 2014b); the efficiency of these
networks is influenced by brain volume (Steffener et al. 2016).

Neural compensation We define neural compensation as
task-related activation that occurs only in the presence of
structural brain changes; i.e. this may result in improved per-
formance for those who compensate (e.g. HAROLD (Cabeza
2002; Cabeza et al. 2002)). However, we have noted that a
compensatory network is often used when the primary net-
work has lost function (Zarahn et al. 2007; Steffener et al.
2009), as have others (Grady et al. 1994; Reuter-Lorenz
2002; Madden et al. 1999). Again, Fig. 1a incorporates neural
compensation into the box labeled Btask-related network
expression.^

Task-invariant networks Our study of neural reserve and
neural compensation rely mainly on task-specific fMRI acti-
vation data, and are therefore relevant to path d in Fig. 1a.
However, we have demonstrated that generic, Btask-invariant
networks^ may also be elicited during the performance of
disparate tasks (Stern et al. 2008). By subserving some general
as opposed to task-specific function, these task-invariant net-
works might allow someone to cope with both pathology and
task-related network changes in order to maintain effective

functioning. Thus these task-invariant networks are expressed
as a function of CR, and also may allow people to maintain
function in the face of age- or disease-related brain changes.
This concept of task-invariant networks is relevant to path e in
Fig. 1a, where CRmoderates the total effect of brain and task-
related neural network changes in order to maintain
performance.

Formally, these task-invariant networks may be viewed as
another manifestation of neural reserve, in that they are most
likely present in healthy individuals and influenced by life
exposures. Identifying such networks can also help to begin
addressing the question of whether CR is simply the aggrega-
tion of specific task-related skills, or if CR can operate in a
more generic, task invariant fashion.

In one study, we attempted to identify a task-invariant CR
network by extracting an fMRI covariance pattern that was
expressed across two different, unrelated tasks, and whose
degree of expression correlated with standard proxies of CR
(Stern et al. 2008). With increasing CR there was increased
expression in right and left superior frontal gyrus and concom-
itant reduced expression in left medial frontal gyrus. Such a
network was noted in young but not older participants. We are
currently attempting to apply this approach to our current
studies.

Longitudinal studies

The promise of better understanding CR and BR is that they
have strong implications for preservation of function over
time. Thus, the neural mechanisms underlying reserve are
optimally studied in a longitudinal context. It is now well-
recognized that prospective data is required in order to evalu-
ate how the effect of age on cognition may be mediated by
brain changes (Lindenberger et al. 2011; Maxwell and Cole
2007). The same theoretical and analytic issues are even more
acute when exploring how BR and CR may influence the
progression of cognitive aging and emergence of dementia.
Longitudinal studies allow us to directly evaluate whether
and how baseline measures of BR and CR result in preserved
brain structure and/or cognitive function. More importantly,
the theories of reserve rest on the idea that some aspects of
lifestyle and behaviormoderate the negative effects of advanc-
ing age; therefore, the greatest evidence for the presence and
mechanisms of reserve comes from longitudinal follow-up.
Longitudinal analyses allow us to study reserve in action,
i.e. in the presence of observed, progressing brain changes.
Longitudinal studies can therefore help establish causal links
that heretofore have been merely theorized to exist between
brain change, CR networks/proxies and more successful cog-
nitive or brain aging.

Figure 1b addresses how prospectively collected data can
allow us to incorporate change over time in all of our measures
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and better address models of CR, BR and BM. We can
directly explore how changes in brain morphology and in-
tegrity impact cognitive and functional status, and are mod-
erated by CR (Path f). Longitudinal data also provide a
more appropriate venue for addressing paths d and e. In
path d, CR moderates the relationship between changes in
brain subsequent task-related activation. In path e, CR
might be associated with task-invariant networks that mod-
erate between altered brain and task-related activation on
one hand and performance on the other. In addition, be-
cause we are now measuring change in BR, longitudinal
data allows us to directly assess the determinants of BM
(path g) using many of the same life exposure measures that
are applied to CR. Although for brevity we did not repeat
the inclusion of age, genetics and life exposures in Fig. 1b,
we hypothesize that these factors influence the rate of
change in BM or pathology as well as CR.

Recently, there has been intense interest in the Bpreclinical^
phase of AD, where the underlying pathologic changes are
present, but cognitive changes are subtle or not observed
(Sperling et al. 2011). It is now well-recognized that CR is
very important in understanding this phase. For example, a
more recent version of the well-known Jack et al. (2013) hy-
pothetical model of dynamic biomarkers underlying the de-
velopment of AD now recognizes that there is inter-individual
variability in the cognitive changes associated with any level
of pathology (see Jack et al. (2013), Figure 6). There have also
been suggestions that CR proxies might directly impact the
development of AD pathology (e.g. (eg., Landau et al. 2012;
Adlard et al. 2005). Prospective data are crucial to address
these issues.

Directly measuring CR

We have been systematically examining and developing
models of BM and CR. We replicated the residual approach
proposed by Reed et al. (2010) for measuring CR in our epi-
demiologic data (Zahodne et al. 2013). The variance in mem-
ory performance accounted for r by brain measures and by
demographics was quantified. The remaining, residual vari-
ance behaved like a direct measure of CR: it correlated with
CR proxies and predicted subsequent cognitive decline and
dementia. We also examined changes in this residual estimate
of CR over time (Zahodne et al. 2015). We have now devel-
oped a parallel approach to measuring BM in the data from the
current study. We first used a weighted combination of gray
matter regional volumes to predict chronological age and de-
fined the difference between actual and chronological age as a
measure of BM. Several life exposures, including education,
estimated IQ, and physical activity, were associated with in-
creased BM (Steffener et al. 2016). In a subsequent set of
analyses (Habeck et al. (2016)) we extended this approach

by incorporating multiple measures of brain integrity to esti-
mate age and then BM. In this study, also derived residual
measures for CR using multiple brain integrity predictors.
Interestingly, we found that the CR residual derived from four
different cognitive abilities all tapped into the same underlying
process.

Eventually, we hope to identify task-invariant networks
whose expression is a direct measure of CR. One potential
approach for identifying such networks was discussed
above, where we sought a network that was expressed in
two disparate tasks and whose expression correlated with
CR. We are currently working an extension of this ap-
proach, by trying to identify a single network expressed
during the performance of many different tasks and whose
expression correlates with CR proxies. Such a network
can then be tested by forward applying it to data from
other tasks. If it is truly a task invariant CR network, then
its expression in this forward application should be corre-
lated with CR. Similarly, in Fig. 1 we could replace CR
proxies with expression of a putative task-invariant net-
work. We could then test whether network expression
provides the same moderation that can be seen using CR
proxies in both paths d and e. In other words, the task-
invariant network should act in a manner that is consonant
with CR.

Conclusion

In this paper I have tried to define our understanding of the
concepts of CR, BR, and BM. I have also attempted to expli-
cate the models and approaches that our group is using to
explore these concepts. My hope is that this presentation will
spark discussion across groups that study these concepts,
allowing us to come to some common agreement on defini-
tions, methodology and approaches.
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