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A B S T R A C T   

Cognitive reserve explains differential susceptibility of cognitive performance to neuropathology. We investi
gated whether certain personality traits underlie cognitive reserve and are accordingly associated with better 
cognition and less cognitive decline in the presence of age-related brain changes. We included healthy adults 
aged 19–80 years for cross-sectional (N=399) and longitudinal (N=273, mean follow-up time=5 years, SD=0.7 
years) analyses. Assessment of the BIG5 personality traits openness, conscientiousness, extraversion, agree
ableness, and neuroticism was questionnaire-based. Each cognitive domain (perceptual speed, memory, fluid 
reasoning, vocabulary) was measured with up to six tasks. Cognitive domain-specific brain status variables were 
obtained by combining 77 structural brain measures into single scores using elastic net regularization. These 
brain status variables explained up to 43.1% of the variance in cognitive performance. We found that higher 
openness was associated with higher fluid reasoning and better vocabulary after controlling for brain status, age, 
and sex. Further, lower brain status was associated with a greater decline in perceptual speed only in individuals 
with low openness. We conclude that high openness benefits cognitive reserve.   

1. Introduction 

Life expectancy has dramatically increased over the past decades, 
with the global life expectancy increasing by 5 years between 2010 and 
2016 (Gulland, 2016). Since age represents a key risk factor for de
mentia (Niu et al., 2017), it has been estimated that the global dementia 
prevalence will almost triple within the next 30 years (Nichols et al., 
2022). Alzheimer’s disease (AD) is the most common form of dementia 
(Alzheimer’s Association, 2022; Barker et al., 2002) and is characterized 
by ß amyloid deposition, pathologic tau, and neurodegeneration in the 
brain (Jack et al., 2018). Surprisingly, post-mortem brain examinations 
revealed that about one quarter of individuals whose brains have severe 
AD pathology were not diagnosed with AD during their lifetime (Riley 
et al., 2002; Roe et al., 2007). Since dementia represents a major chal
lenge for societies all over the world (Nichols et al., 2022), it is essential 
to better understand what makes some individuals resistant to the 
negative effects of brain pathology on clinical outcomes. 

The concept that describes differential susceptibility to age- and 
disease-related brain pathology has been termed cognitive reserve (CR) 
(Stern, 2009). According to this concept, individuals with higher CR can 
withstand more brain pathology, such as cortical thinning, volume loss 
or accumulation of amyloid plaques and tau tangles, before experiencing 
cognitive impairment. The underlying neural mechanisms may be that 
individuals with higher CR have neural networks with greater efficiency 
and/or capacity and/or they are better in compensating for brain pa
thology by using alternate brain networks (Stern and Barulli, 2019). 
Among the best-studied factors underlying CR are high educational and 
occupational attainment, intelligence, as well as participation in leisure 
activities of intellectual or social nature (Opdebeeck et al., 2016; Tucker 
and Stern, 2011). To test whether a factor underlies CR, the rigorous 
CR-test outlined by the “Reserve and Resilience” collaboratory (htt 
p://reserveandresilience.com/) can be used. The collaboratory’s CR 
test states that factors associated with CR should explain variance in 
cognitive performance beyond the variance explained by brain status 
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and/or moderate the brain status-cognition relationship (Stern et al., 
2023, 2020). Since personality may influence leisure behavior, e.g., the 
extent to which somebody pursues intellectual or social leisure activities 
or takes advantage of new learning opportunities, personality may also 
underlie CR (Ihle et al., 2019; Trapp et al., 2019). If so, personality 
should explain variance in cognitive performance beyond the variance 
explained by brain status and/or moderate the brain status-cognition 
relationship. 

Personality can be described by the 5 factors (BIG5) openness to 
experience, conscientiousness, extraversion, agreeableness, and 
neuroticism (Costa and McCrae, 1992). A recent meta-analysis on 
personality-cognition relationships, which included data from millions 
of individuals from 1976 independent samples, found that openness and 
some facets of conscientiousness and extraversion were positively 
associated with several cognitive abilities, while neuroticism was 
negatively associated with most cognitive abilities (Stanek and Ones, 
2023). Agreeableness showed very weak associations with cognition 
(Stanek and Ones, 2023). Further, higher openness to experience, higher 
conscientiousness, lower extraversion, and lower neuroticism have been 
found to be related to less cognitive decline over time (Luchetti et al., 
2016). Additionally, previous studies reported that individuals with AD 
have a distinctive personality profile compared to healthy controls, as 
expressed by higher scores on the neuroticism scale (D’Iorio et al., 2018; 
Wilson et al., 2006) and lower scores on the conscientiousness (Wilson 
et al., 2007), extraversion and openness scales (D’Iorio et al., 2018). 
However, the question whether personality is a factor underlying CR has 
been addressed in few studies so far (Colombo et al., 2020; Graham 
et al., 2021; Tautvydaitė et al., 2017; Terracciano et al., 2013). Studies 
on the relationship between personality and cognition provide an 
important basis for this question, but they do not take into account brain 
status. Thus, only the question of whether personality traits underlie CR 
can shed light on whether certain personality traits have a protective 
function. A protective function implies that certain personality traits can 
modify the effects of age- and disease-related brain pathology on 
cognition. Alternatively, in the absence of a modifying effect, whether 
personality traits have an effect on cognition that cannot be explained by 
brain status. 

Colombo et al. (2020) investigated in 100 healthy participants aged 
50–90 years the relationship between personality and CR and found that 
higher openness as well as some personality subfacets were related to 
higher CR. In this study, brain status was not considered as CR was 
assessed using the CoRe-T measurement, which consists of a self-report 
section on educational level, leisure activities, and occupation history, 
and two tasks assessing fluidity of thoughts. 

In an autopsy study, Terracciano et al. (2013) investigated whether 
individuals with AD pathology who were asymptomatic during their 
lifetime differed from individuals diagnosed with AD in terms of per
sonality. Personality was measured 1–30 years before death (mean 
(SD)=15 (7) years). They found that the asymptomatic individuals had 
higher conscientiousness scores and lower neuroticism scores than the 
individuals diagnosed with AD (Terracciano et al., 2013). This finding 
suggests that high conscientiousness and low neuroticism are related to 
high CR. Compared to the study by Colombo et al. (2020), this study has 
the advantage that they tested directly whether personality moderates 
the association between AD pathology and clinical diagnosis. However, 
in this study the outcome was a diagnosis of AD versus no diagnosis, 
which is a dichotomous rather than a continuous outcome. Using a 
dichotomous variable rather than a continuous outcome to classify how 
successfully someone has aged cognitively is an oversimplification, as 
individuals without a diagnosis of AD can vary widely in their cognitive 
performance and some individuals may also fall in the other category 
depending on the diagnostic criteria used. 

Tautvydaitė et al. (2017) also focused on AD pathology and exam
ined whether premorbid personality moderates the relationship be
tween cerebrospinal fluid (CSF) markers of AD (amyloid beta1–42, 
phosphorylated tau, and total-tau) and global cognition or explains 

additional variance in cognition after correcting for these CSF AD 
markers. They found that premorbid conscientiousness, agreeableness, 
and neuroticism moderated the relationship between CSF biomarkers 
and cognition. Here, CSF biomarkers were almost unrelated to cognitive 
performance if the score for conscientiousness was high, the agree
ableness score was low, or the neuroticism score was medium. Further, 
higher premorbid openness predicted better cognitive performance after 
correcting for CSF biomarkers. However, in addition to healthy controls 
(N=44), their study sample consisted of individuals with mild cognitive 
impairment (MCI) (N=57) and patients with mild AD (N=9). That is 
why participants’ proxies were asked to retrospectively rate partici
pants’ personality traits at the time five years prior to onset of symp
toms, which might be subject to memory bias. 

Graham et al. (2021) also treated CR as a continuous variable by 
regressing cognitive performance onto various measures of brain pa
thology and then extracting the residual as a measure of CR. Like Ter
racciano et al. (2013), they found in their autopsy study that low 
neuroticism was cross-sectionally associated with higher CR and that 
high conscientiousness was longitudinally associated with higher CR. 
However, the study sample had a high mean age as participants were 
recruited either from retirement communities and senior housing facil
ities (Rush Memory and Aging Project) or from church (older nuns, 
priests, and brothers; Religious Orders Study). Personality is considered 
to be rather stable but changes in personality still occur across the adult 
lifespan (Wrzus and Roberts, 2017). Thus, it is unclear whether per
sonality can also underly CR in younger age. Further, in this study a 
global cognition score was used, leaving the question open whether 
personality can account for the discrepancy between brain pathology 
and performance in all or only certain cognitive domains. 

This project therefore uses both cross-sectional and longitudinal data 
to investigate whether personality represents a factor underlying CR in 
individuals aged 19–80 years who had at the time of recruitment no 
medical or psychiatric conditions (including MCI) that might affect 
cognitive performance. The inclusion of participants from a wide age 
range provides new insights into the question of whether personality is a 
factor underlying CR even at a young age. Further, screening for con
ditions that may affect cognition should prevent bias in personality 
assessment. In addition, we used a very rigorous, state-of-the-art 
methodology to assess whether personality traits underlie CR. To 
apply the CR-test proposed by the “Reserve and Resilience” collabo
ratory rigorously, we created brain status variables that explain the 
maximum amount of variance in cognitive performance. As outcome 
variables, we used four cognitive domain scores that have been 
measured on a continuous scale rather than a global dichotomous 
outcome. The use of four cognitive domain scores rather than a global 
cognition score has the added advantage of providing insight into 
whether personality traits can account for the discrepancy between 
brain pathology and performance in all or only certain cognitive 
domains. 

Overall, this study contributes to a better understanding of which 
personality traits are favorable and associated with higher CR across the 
adult lifespan, which may also help to identify individuals at higher risk 
of developing dementia. Based on the findings from previous studies, we 
hypothesize that high openness (Colombo et al., 2020; Tautvydaitė 
et al., 2017), high conscientiousness (Graham et al., 2021; Tautvydaitė 
et al., 2017; Terracciano et al., 2013), and low neuroticism (Graham 
et al., 2021; Terracciano et al., 2013) underlie CR and are therefore 
associated with better cognitive performance and lower cognitive 
decline after accounting for brain status and/or moderate the brain 
status-cognition relationship. 

2. Material and methods 

2.1. Participants 

We used baseline and follow-up data from the Reference Ability 
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Neural Network (RANN) and the Cognitive Reserve (CR) studies 
(Habeck et al., 2016; Stern, 2009; Stern et al., 2014). Both studies are 
ongoing at Columbia University Irving Medical Center and acquire the 
same basic subject information, neuropsychological examinations, and 
brain measures. Participants were carefully screened for psychiatric or 
medical conditions that could affect cognition (including MCI), as the 
presence of these conditions represented an exclusion criterion for both 
studies. Out of 591 participants, 449 (76%) participants had data in all 
personality dimensions available. For 441 (98.2%) of those participants, 
at least one cognitive domain score could be calculated. Cortical thick
ness and subcortical gray matter data were available for all but 42 
(9.5%) of those 441 individuals, yielding a sample size of 399 in
dividuals for the cross-sectional analyses. Longitudinal analyses were 
calculated in a smaller subset of this sample (N=273) as not all in
dividuals have completed their first follow-up visit yet. The average 
follow-up period was 5 years (SD = 0.7 years). 

2.2. Personality 

Participants filled out the 50-item Big Five scale from the Interna
tional Personality Item Pool (IPIP), which measures the five personality 
dimensions openness to experience, conscientiousness, extraversion, 
agreeableness, and neuroticism (reversed emotional stability, so higher 
values indicate higher neuroticism and lower emotional stability) 
(Goldberg, 1999). In this inventory, participants are asked to indicate on 
a 5-point scale ranging from “strongly agree” to “strongly disagree” the 
extent to which each statement applies to them. 

2.3. Cognition 

Performance was assessed in four cognitive domains: perceptual 
speed, episodic memory, fluid reasoning, and vocabulary. During both 
the baseline and the follow-up visit, the neuropsychological examina
tion included three cognitive tasks per domain. Participants in the RANN 
study additionally performed three computerized tasks per cognitive 
domain during the MRI examination (Stern et al., 2014). The assessment 
of perceptual speed encompassed the WAIS-III Digit-symbol task, the 
Stroop Color and Word Test (Golden, 1975), and the trail-making test A. 
In the MRI scanner, participants performed the perceptual speed tasks 
Digit Symbol, Letter Comparison, and Pattern Comparison (Salthouse 
and Babcock, 1991). Episodic memory was measured out of scanner 
with three measures from the Selective Reminding Test (SRT): long-term 
storage, continuous long-term retrieval, and number of words remem
bered in the last retrieval (Buschke and Fuld, 1974). In the scanner, 
episodic memory was assessed with the Logical Memory, Word Order 
Recognition, and Paired Associates tasks. Fluid reasoning was measured 
with the Matrix Reasoning and the Letter-number Sequencing task of the 
Wechsler Adult Intelligence Scale III (WAIS-III) as well as the Block 
Design test in the neuropsychological examination. In addition, the 
three in-scanner tasks Paper Folding, Matrix Reasoning and Letter Sets 
(Ekstrom et al., 1976) were administered to assess fluid reasoning. Vo
cabulary was assessed outside the MRI scanner with the WAIS-III 
Vocabular test, the Wechsler Test of Adult Reading (Wechsler, 2001), 
and the American National Adult Reading Test (Grober and Sliwinski, 
1991), and within the scanner with the Synonyms (Salthouse, 1993), 
Antonyms (Salthouse, 1993), and Picture Naming tasks (Salthouse, 
1998). 

Previously the cognitive tasks had been assigned to the four cognitive 
domains using factor analysis and we decided to keep the same factor 
structure. We then used the lavaan package in R (Rosseel, 2012) to apply 
confirmatory factory analysis to extract combined domain scores. We 
restricted the factor loadings to be the same for both baseline and 
follow-up assessment to ensure measurement invariance. Domain scores 
were only created if participants had at least two cognitive test scores 
per domain available. To handle missing values, we used full informa
tion maximum likelihood. When we evaluated how well confirmatory 

factor analysis performed, we found that the chi-square test as an ab
solute measure of model fit was significant (chi-square = 835.8; degrees 
of freedom = 246; p < 0.001), indicating that the confirmatory model 
does not optimally fit to the data (Alavi et al., 2020). However, the 
chi-square index is strongly affected by sample size and by the number of 
variables in the model (Alavi et al., 2020). Thus, we also checked model 
performance using two incremental fit indices and one residuals-based 
fit index. Overall, these indices indicated a fair but improvable model 
fit. “Bollen’s incremental fit index” was 0.90 and the “Tucker-Lewis 
index” was 0.88, and the lenient recommended cut-off for both indices is 
>0.90, whereas the strict recommended cut-off is >0.95 (Hu and Ben
tler, 1999). The residual-based fit index “root mean square error of 
approximation” was 0.07 (95% confidence interval (CI): 0.07–0.08), 
with lower values indicating a better model fit and 0.08 being classified 
as “fair model fit” according to Marcoulides and Yuan (2017). When we 
subsequently checked the factor structure, we observed small factor 
loadings for the Logical Memory (estimate = 0.29), the Paired Associates 
(estimate = 0.42), and the Word Order Recognition tasks (estimate =
0.46) on the episodic memory score. The other 21 factor loadings ranged 
between 0.54 and 0.98. One reason for these small loadings on the 
episodic memory score may be that the three other memory outcomes 
are from the same task, the Selective Reminding task, and are highly 
correlated with each other (Pearson’s product-moment correlations 
between 0.78 and 0.89). Subsequent exploratory factor analysis 
confirmed that the three memory tasks loaded slightly higher on the 
fluid reasoning domain score than on the episodic memory domain score 
(Logical memory task: 0.27 versus 0.15, Paired Associates task: 0.52 
versus 0.25, Worder Order Recognition task: 0.51 versus 0.27). How
ever, from a theoretical perspective these tasks represent memory task 
even if fluid intelligence may also influence overall task performance 
(Spaan, 2016). In addition, we wanted to keep all three highly correlated 
memory outcomes for the episodic memory domain score and be 
consistent with our previous work. Thus, we decided not to optimize the 
factor structure. 

2.4. Imaging data 

The 12 in-scanner cognitive tasks in the RANN study were acquired 
during a two-hour magnetic resonance imaging (MRI) session in Tesla 
Philips Achieva Magnet scanners with a standard quadrature head coil. 
T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) 
scans were acquired for each subject using the following parameters: 
TE/TR of 3/6.5 ms, flip angle of 8◦, in-plane resolution of 256×256, 
field of view of 25.4×25.4 cm, and 165–180 slices in axial direction with 
slice-thickness/gap of 1/0 mm. Each subject’s structural T1 scan was 
reconstructed, and the cortex was parceled into 68 regions of interest 

Table 1 
Brain status-cognition associations.  

Cognitive 
outcome 

β (95-% CI) for cognitive domain-specific brain status 
variable 

R2 

(%) 

Perceptual 
speed  

0.635 (0.427, 0.843)  43.1 

Episodic 
memory  

0.727 (0.407, 1.047)  26.5 

Fluid reasoning  0.977 (0.772, 1.183)  32.9 
Vocabulary  1.491 (1.184, 1.798)  24.4 

Multivariable regression analyses were performed to assess how well the created 
cognitive domain-specific brain status variables capture interindividual differ
ences in cognitive performance. Regression model: cognitive domain score ~ b0 
+ cognitive domain-specific brain status variable*b1 + age*b2 + sex*b3 + re
sidual error. Regression coefficients for cognitive domain-specific brain status 
variables indicate the change in the corresponding cognitive domain score per 
one standard deviation increase in the brain status variable. All p values <0.001. 
R2 refers to the variance explained in the cognitive domain scores by the cor
responding brain status variable. 
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Table 2 
Sample characteristics for the cross-sectional analyses.  

Characteristic Participants Missing values [%] 

Sex, Nfemale (%) 220 (55.1)  0 
Age, median [IQR] in years 59.0 [39.0, 65.5]  0 
Race, N (%)   0 

White 254 (63.7)   
Asian 15 (3.8)   
Black/African American 97 (24.3)   
Native Hawaiian or other Pacific Islander 5 (1.3)   
Black/African American + White 1 (0.3)   
Asian + White 1 (0.3)   
Other 26 (6.5)   

Education, M (SD) in years 15.9 (2.3)  0.3 
Openness, M (SD), scale from 1 to 5 3.8 (0.6)  0 
Conscientiousness, M (SD), scale from 1 to 5 4.0 (0.6)  0 
Extraversion, M (SD), scale from 1 to 5 3.3 (0.7)  0 
Agreeableness, median [IQR], scale from 1 to 5 4.2 [3.8, 4.6]  0 
Neuroticism, median [IQR], scale from 1 to 5 2.4 [1.8, 2.9]  0 
Mean cortical thickness, M (SD) in mm 2.5 (0.1)  0 
Perceptual speed    

WAIS-III Digit-symbol task [n correctly assigned symbols to digits in 90 s, max=93 symbols], M (SD) 53.5 (14.2)  0.8 
Stroop Color and Word Test [number of colors correctly said in 45 s], M (SD) 72.1 (13.8)  1.5 
Trail-making test A [completion time in s], median [IQR] 25.0 [20.7, 33.0]  1.0 
Digit Symbol [median RT in s across correct trials], M (SD) 1.5 (0.2)  28.8 
Letter Comparison [median RT in s across correct trials], M (SD) 1.6 (0.2)  28.8 
Pattern Comparison [median RT in s across correct trials], M (SD 1.5 (0.3)  28.3 

Episodic memory    
Selective Reminding Test (SRT): long-term storage [n words, max= 72], M (SD) 45.1 (15.0)  1.3 
SRT: continuous long-term retrieval [n words, max= 72], M (SD) 34.9 (17.4)  1.3 
SRT: last retrieval [n words recalled, max=12], median [IQR] 10.0 [9.0, 12.0]  1.3 
Logical Memory [% on time correct], median [IQR] 77.1 [68.4, 85.0]  25.3 
Word Order Recognition [% on time correct], M (SD) 49.3 (22.4)  25.1 
Paired Associates tasks [% on time correct], median [IQR] 70.0 [50.0, 90.9]  25.8 

Fluid reasoning    
WAIS-III Matrix Reasoning [% on time correct], M (SD) 65.2 (19.7)  1.5 
WAIS-III Letter-number Sequencing task [% on time correct], M (SD) 55.1 (15.2)  1.3 
Block Design test [% on time correct], M (SD) 59.2 (19.5)  2.3 
Paper Folding [% on time correct], median [IQR] 52.9 [31.2, 75.0]  24.8 
Matrix Reasoning [% on time correct], median [IQR] 45.8 [22.2, 66.7]  24.3 
Letter Sets [% on time correct], median [IQR] 76.9 [58.3, 87.5]  25.1 

Vocabulary    
WAIS-III Vocabular test [% correct], median [IQR] 58.0 [50.0, 63.0]  4.5 
Wechsler Test of Adult Reading [% correct], median [IQR] 42.0 [34.0, 47.0]  2.0 
American National Adult Reading Test [% errors], median [IQR] 10.0 [5.0, 18.0]  1.3 
Synonyms [% correct], M (SD) 64.2 (22.1)  29.6 
Antonyms [% correct], M (SD) 58.4 (21.3)  28.6 
Picture Naming task [% correct], M (SD) 54.2 (17.7)  30.3 

Note. N=399 participants. All cognitive measures refer to the baseline performance. We indicated the mean and interquartile range for skewed variables and the mean 
and SD for almost normally distributed variables. N = number, IQR = interquartile range, M = mean, SD = standard deviation, RT = reaction time, WAIS-III =
Wechsler Adult Intelligence Scale III. 
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(ROIs), that are specified in the Desikan-Killiany cortical atlas, using the 
FreeSurfer 5.1 analysis package. We visually inspected how well Free
Surfer had performed the cortical parcellation by inspecting slice by 
slice each subject’s white and gray matter boundaries and the gray 
matter and cerebral spinal fluid (CSF) boundaries. Manual control points 
were added in case of any visible discrepancy and the reconstruction was 
repeated until the results were satisfactory. We then calculated cortical 
thickness as the distance between the gray/white matter surface and the 
gray/CSF surface at each point across the cortical mesh and obtained 
one mean cortical thickness value for each of the 68 ROIs. Each subject’s 
scans were reviewed by a neuroradiologist. Significant findings were 
conveyed to the subject’s primary care physician and led to the removal 
of the scans from the sample. 

To obtain the segmentation for the subcortical gray matter structures 
brain stem, hippocampus, amygdala, nucleus accumbens, nucleus cau
datus, thalamus, putamen, and pallidum, we used the automatically 
segmented brain volume atlas (ASEG) (Fischl, 2012). To check the 
subcortical parcellations, we overlaid the subcortical structure borders 
on the T1 image using Freeview visualization tools and manually cor
rected any discrepancies. Afterwards we divided each subcortical 
structure by the estimated total intracranial volume to correct for the 
effect of head size (Buckner et al., 2004). 

We then used the mean cortical thickness values for each of the 68 
ROIs, all aforementioned subcortical gray matter measures, and the 
ventricle sizes and regressed them all together on each of our four 
cognitive domain scores separately using generalized linear models with 
elastic net regularization (glmnet package in R; (Friedman et al., 2010)). 
Elastic net regularization is a linear regression technique that was 
developed for variable selection (Zou and Hastie, 2005). It combines the 
advantages of ridge and lasso regularization. Its main advantage is that it 
deals well with highly correlated predictor variables, as correlated 
variables can be selected together, rather than arbitrarily selecting one 
of these correlated variables. At the same time, variables that have no 
predictive value for the outcome of interest are removed. This approach 
leads to a parsimonious, stable, and easily interpretable solution (Zou 
and Hastie, 2005). We applied elastic net regularization to select those 
brain variables that best predict cognition and chose for each cognitive 
domain score the model with the lowest mean cross-validated error (20 
folds). Next, we used the selected model and forward predicted cognitive 

performance and extracted the predicted values as cognitive 
domain-specific measures of brain status. To test how well the con
struction of our cognitive domain-specific brain status variables worked, 
we associated them separately with the corresponding domain score 
using linear regression models with the brain status variable as predic
tor, the cognitive domain score as outcome variable, and age and sex as 
covariates. The regression results can be found in Table 1. We also tested 
with a likelihood ratio test whether the brain status-cognition relation
ships significantly varied with age and found that they did not and 
therefore did not create age group-specific brain status variables. 

2.5. Statistical analyses 

We performed all statistical analyses in R Studio (version 2022.12.0, 
R-base version 4.2.2) (RStudio, 2019). We carefully subjected the five 
personality factors to the rigorous CR-test established by the “Reserve 
and Resilience” collaboratory (Stern et al., 2020). We therefore tested 
whether personality traits explain variance in cognitive performance 
after controlling for brain status and whether personality traits moder
ate brain-cognition relationships. 

For testing for cross-sectional associations, we separately performed 
a multiple regression model for each cognitive domain score and per
sonality trait pair with the cognitive score as a dependent variable, one 
personality trait as a predictor, and the cognitive domain-specific brain 
status variable either as an additive covariate or by adding a personality 
trait*brain status interaction term to the model. In each of the 20 
models, we included age and sex as additional covariates. We did not 
include education as a covariate in our main models because education 
represents a CR proxy (Opdebeeck et al., 2016), but we calculated a 
sensitivity analysis in which education was included as a covariate in all 
models. 

Further, we assessed whether the cross-sectional associations varied 
with age or sex by including either an age*personality trait or sex*per
sonality trait interaction term in each model and testing with a likeli
hood ratio test whether the model including the interaction terms was 
superior to the model without interaction term. 

For testing for longitudinal associations, we used the lmerTest 
package in R (Kuznetsova et al., 2017) and performed a linear mixed 
model per cognitive domain score and personality trait. In each model, 

Fig. 1. Age Distribution. This histogram shows the age distribution in the sample. Each bin represents 1 year of age.  
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the cognitive domain score represented the dependent variable, while 
the personality trait represented the predictor and was included as both 
individual term and personality*time (years between baseline and 
follow-up) interaction term. We adjusted each model for age at baseline, 
time, age at baseline*time interactions, sex, brain status, and brain 
status*time interactions. In all longitudinal models, we additionally 
included a random intercept to account for within-subject correlations 
due to the repeated measurement of cognitive performance. Significant 
personality*time effects would indicate that personality is associated 
with cognitive changes after accounting for brain structure, age at 
baseline, and sex. We then used the models described before but addi
tionally added a three-way interaction term for personality*time*brain 
status to test whether personality moderates the relationship between 
brain status and cognitive change. 

To exclude the possibility that our longitudinal results are influenced 
by those individuals who may have developed MCI or AD at follow-up 
assessment, we calculated a sensitivity analysis controlling for cogni
tive status (cognitively normal versus potentially cognitively impaired). 
To identify cognitively impaired individuals due to MCI or AD, we 
selected those individuals whose normative scores in the 

neuropsychological tests at follow-up assessment were 1.5–2 SD below 
the mean. Their cognitive test scores, informant information, and 
medical information were then reviewed by a neuropsychologist and a 
neurologist, and a research diagnosis was made. Our criteria resulted in 
the identification of 5 individuals with MCI and 3 individuals with 
probable AD. 

We corrected all our analyses for multiple testing of the 20 hypoth
eses that we had separately for cross-sectional and for longitudinal as
sociations between personality and CR (4 cognitive outcomes times 5 
personality predictors) applying the false discovery rate (FDR) correc
tion. Multiple-testing corrected p-values below 0.05 were considered 
statistically significant. We corrected for multiple testing because we 
were not only interested in whether certain personality traits are 
beneficial in counteracting the negative effects of age-related brain pa
thology on performance in specific cognitive domains, but also wanted 
to generalize from single cognitive domains to cognition in general. So, 
we were both interested in individual testing and in disjunction testing 
(Rubin, 2021). 

Fig. 2. Personality and Cognitive Domain Scores. This forest plot shows how much performance in different cognitive domains (see y-axis) differs per one SD increase 
in each of the BIG 5 personality dimensions. Associations were adjusted for the cognitive domain-specific brain status variable, age, and sex. Each dot represents the 
standardized estimate for the association, while the lines around it show the 95%-confidence interval belonging to this estimate. The corresponding values are shown 
in the column on the right side with significant associations printed in bold. Notably, all dots on the right side of the dotted vertical line indicate that higher values in 
the respective personality dimension are associated with better cognitive performance in the specific domain, while all dots on the left side indicate that higher values 
in the respective personality dimension were associated with lower cognitive performance. 
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3. Results 

3.1. Study sample 

Our cross-sectional sample consisted of 399 individuals aged 19–80 
years, of whom 55.1% were female, according to the sex designated at 
birth (Table 2). The average educational level was 15.9 years (SD=2.3 
years) (Table 2). This table also provides descriptive characteristics of 
cognitive performance in the 24 cognitive tasks at baseline. Fig. 1 shows 
the age distribution in our sample. 

3.2. Cross-sectional associations between personality and CR 

Cross-sectionally, higher openness was associated with higher fluid 
reasoning (standardized regression coefficient (ß)=0.143; 95% CI: 
0.062–0.224; p=0.001; pFDR=0.010) and better vocabulary (ß=0.239; 
95% CI: 0.154–0.325; p<0.001; pFDR<0.001) after controlling for brain 
status (Fig. 2). Including education as an additional covariate in the 
models reduced the association between openness and fluid reasoning 
(ß=0.083; 95% CI: 0.004–0.162; p=0.040; pFDR=0.245) and the asso
ciation between openness and vocabulary (ß=0.158; 95% CI: 
0.078–0.239; p<0.001; pFDR<0.001), with the former being no longer 
significant after correction for multiple testing. Higher openness was 
also associated with higher perceptual speed (ß=0.095; 95% CI: 
0.020–0.169; p=0.013; pFDR=0.087) before correcting for multiple 
testing and before controlling for education. None of the other person
ality traits were associated with any cognitive outcome after correcting 
for brain structure (Fig. 2). When we assessed whether the BIG5 

personality traits moderate the brain structure cognition relationship, 
we found no moderation effects. 

The results from the likelihood ratio tests indicated that the models 
with age*personality trait or sex*personality trait interaction terms 
were not superior to the basic models (all pFDR > 0.330). This finding 
indicates that the associations between personality and cognition did 
not significantly vary with age or sex. 

3.3. Longitudinal associations between personality and CR 

Before FDR-correction, we found that higher conscientiousness was 
associated with faster cognitive decline in perceptual speed (ß for con
scientiousness*time=− 0.012; 95% CI: − 0.023 to − 0.001; p=0.038; 
pFDR=0.760) after controlling for brain status. When we included per
sonality trait*brain status interaction terms, openness moderated the 
relationship between brain status and decline in processing speed (ß for 
openness*time*brain status=− 0.033; 95% CI: − 0.053 to − 0.013; 
p=0.001; pFDR=0.020). Here, in those individuals with high openness, 
brain status was almost unrelated to decline in perceptual speed (Fig. 3). 
However, in individuals with low openness, the relationship between 
brain status and change in perceptual speed was steeper, with in
dividuals with low brain status showing a stronger decline in perceptual 
speed (Fig. 3). The longitudinal results were unchanged when education 
was added to the models as covariate. Excluding those individuals who 
developed MCI or AD at follow-up also did not substantially affect the 
results. 

4. Discussion 

The relationship between personality and cognition has been studied 
extensively (Stanek and Ones, 2023), but the extent to which personality 
traits underlie CR requires further investigation. Our aim was to inves
tigate whether the BIG5 personality traits underlie CR across the adult 
lifespan and are accordingly associated with better cognitive perfor
mance and less cognitive decline in the presence of age-related brain 
changes. To do so, we applied a rigorous CR test that included four 
cognitive domain-specific brain status variables and cognitive domain 
scores. We were able to confirm the finding of previous studies that high 
openness benefits CR (Colombo et al., 2020; Tautvydaitė et al., 2017), 
but not previous reports that high conscientiousness (Graham et al., 
2021; Tautvydaitė et al., 2017; Terracciano et al., 2013) and low 
neuroticism (Graham et al., 2021; Terracciano et al., 2013) are associ
ated with high CR. 

Cross-sectionally, higher openness was associated with higher vo
cabulary, higher fluid reasoning, and better perceptual speed after 
controlling for brain structure, with the latter two associations being less 
robust to FDR-correction. Longitudinally, our study findings suggest that 
the relationship between brain status and change in perceptual speed 
differs depending on an individual’s level of openness. Specifically, for 
individuals with high openness, brain status did not serve as a predictor 
of change in perceptual speed. However, for individuals with low 
openness, a lower baseline brain status was associated with a more 
pronounced decline in perceptual speed from baseline to follow-up 
assessment. One potential explanation for why openness showed lon
gitudinal associations only with perceptual speed but with no other 
cognitive domain might be that the mean cognitive change from base
line to follow-up was greatest in this domain (speed: − 0.254 SD, 
memory: − 0.071 SD, reasoning: − 0.144 SD, vocabulary: 0.187). Thus, 
the statistical power to detect the interaction effect on perceptual speed 
was potentially larger. Taken together, our cross-sectional and longitu
dinal findings suggest that high openness can buffer the negative effects 
of brain atrophy on performance and decline in certain cognitive di
mensions. Since most of the associations survived correction for multiple 
testing, our findings indicate that high openness helps to counteract the 
negative effects of age-related brain pathology on cognition in general. 
Thus, openness seems to be an important factor underlying CR, which is 

Fig. 3. Personality x Brain Structure Interaction on Cognitive Change. The 
scatterplot depicts on the x-axis the brain status variable that has been derived 
specifically for perceptual speed. The y-axis depicts change in perceptual speed 
from baseline to follow-up assessment, which was calculated by subtracting the 
perceptual speed score at baseline assessment from the perceptual speed score 
at follow-up assessment. Thus, negative values indicate a decline in perfor
mance and positive values indicate an increase in performance from baseline to 
follow-up. Each data point represents one participant. The black dots represent 
participants with a high openness (z-standardized score above 0) and the light- 
gray dots represent participants with low openness (z-standardized score below 
or equal to 0). For both groups of participants (high versus low expression of 
openness), there exists one superimposed function for the relationship between 
the brain status and cognitive change. The gray area around the group-specific 
regression lines indicates the 95% confidence interval in each case. 
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consistent with the findings from Colombo et al. (2020) and Tautvydaitė 
et al. (2017). 

Higher conscientiousness was associated with a stronger decline in 
perceptual speed. However, this effect did not remain significant after 
correction for multiple testing, which suggests that this association was 
not very robust and might be a false positive finding. The studies by 
Terracciano et al. (2013), Tautvydaitė et al. (2017), and Graham et al. 
(2021) all reported that higher conscientiousness was related to higher 
CR. It could be that our finding goes in the opposite direction because we 
used perceptual speed as outcome variable rather than diagnosis of AD 
(Terracciano et al., 2013) or global cognition (Graham et al., 2021; 
Tautvydaitė et al., 2017). However, high conscientiousness also seems to 
be beneficial for speed task, as shown by a recent large-scale meta-
analysis on personality-cognition relationships (Stanek and Ones, 2023). 
Thus, our correction for multiple testing was very likely not too strin
gent, and our result represented a false positive finding. 

Extraversion, agreeableness, and neuroticism were all not associated 
with cognitive performance or cognitive decline after correcting for 
brain status and did not moderate the brain status-cognition relation
ships. Thus, our findings indicate that extraversion, agreeableness, and 
neuroticism do not underlie CR. In line with this observation, extra
version has not been found to underlie CR in previous studies (Colombo 
et al., 2020; Graham et al., 2021; Terracciano et al., 2013). Concerning 
agreeableness, it has been found that this personality trait has the 
weakest associations with cognitive performance (Stanek and Ones, 
2023). Tautvydaitė et al. (2017), who focused specifically on AD 
markers in CSF and analysed data from a sample that also contained 
individuals with MCI and AD, found that low agreeableness relates to 
higher CR. However, it remains unclear how generalizable this finding is 
to a healthy population. Similarly, neuroticism has been found to be 
negatively related to CR in the cross-sectional analyses by Terracciano 
et al. (2013) and Graham et al. (2021), even if this finding could not be 
confirmed in previous longitudinal analyses (Colombo et al., 2020; 
Graham et al., 2021; Terracciano et al., 2013). The lack of longitudinal 
evidence and the fact that all three studies that found this association 
included either only very old individuals or individuals with an AD 
diagnosis and that this association was not found in a previous study that 
included only healthy individuals with a wider age range (Colombo 
et al., 2020), leaves open the possibility that this effect is driven by those 
individuals who are about to develop or already have AD. These in
dividuals are not (anymore) able to withstand high brain pathology and 
therefore have a low CR. At the same time, they may develop high 
neuroticism as result of the self-perception that their own cognitive 
abilities are declining. These individuals would then have both low CR 
and high neuroticism without high neuroticism necessarily being the 
cause of low CR. 

One limitation of our study is that we administered only the 50-item 
Big Five scale from the IPIP to our participants and, therefore, had too 
little items to study sub facets of personality. An extended personality 
assessment would be interesting as different personality sub facets have 
been found to relate differently to cognitive performance (Stanek and 
Ones, 2023) and CR (Colombo et al., 2020). Future studies should also 
consider using a brain-based measure of CR to test which personality 
traits are related to CR, such as a task-invariant network of CR (Stern 
et al., 2018), as some personality-cognition associations depend on the 
cognitive domain under study (Stanek and Ones, 2023). 

5. Conclusions 

To conclude, our findings imply that high openness benefits CR and 
that individuals with low openness are therefore at great risk of devel
oping cognitive decline in the presence of brain pathologies. In
terventions could therefore be targeted specifically at these individuals, 
and a high level of openness should be encouraged across the adult 
lifespan. 
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