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SUMMARY

Prior studies suggested that the transcription factor
ATF4 negatively regulates synaptic plastic andmem-
ory. By contrast, we provide evidence from direct
in vitro and in vivo knockdown of ATF4 in rodent hip-
pocampal neurons and from ATF4-null mice that
implicate ATF4 as essential for normal synaptic
plasticity and memory. In particular, hippocampal
ATF4 downregulation produces deficits in long-
term spatial memory and behavioral flexibility
without affecting associative memory or anxiety-
like behavior. ATF4 knockdown or loss also causes
profound impairment of both long-term potentiation
(LTP) and long-term depression (LTD) as well as
decreased glutamatergic function. We conclude
that ATF4 is a key regulator of the physiological state
necessary for neuronal plasticity and memory.

INTRODUCTION

Activating transcription factor 4 (ATF4) belongs to the ATF/cAMP

response element binding protein (CREB) family (Hai and Hart-

man, 2001). Although it was originally described as a repressor

of CRE-dependent transcription (Karpinski et al., 1992), ATF4

can also act as a transcriptional activator (Bouman et al., 2011).

Transcriptional regulation by ATF4 occurs through the forma-

tion of homo- and heterodimers with a variety of partners via its

basic leucine zipper (bZIP) domain (Hai and Curran, 1991). ATF4

has roles in a variety of tissues. ATF4-null mice are blind due to

lens dysgenesis and have severely impaired bone development

(Elefteriou et al., 2006; Tanaka et al., 1998). In the mammalian

nervous system, ATF4 has been implicated in synaptic plasticity

and memory formation (Chen et al., 2003; Costa-Mattioli et al.,

2007). Studies on Aplysia identified ApCREB2, a homolog of

ATF4, as an inhibitor of CREB-dependent long-term facilitation

(Bartsch et al., 1995; Lee et al., 2003b). Consistent with this,

several studies in rodents, performed by manipulating eIF2a

phosphorylation (which regulates translation of ATF4 among

other proteins) (Costa-Mattioli et al., 2005, 2007) or using a broad
dominant-negative inhibitor of C/EBP proteins (Chen et al.,

2003), led to suggestions that ATF4 negatively regulates long-

term memory and synaptic plasticity. In contrast, recent studies

have supported the view that ATF4 is required for object recog-

nition memory (ILL-Raga et al., 2013), fear extinction memory

(Wei et al., 2012), and memory flexibility (Trinh et al., 2012). For

all of these studies, interpretation is hampered by the use of

indirect ATF4 modulation, which has the potential to affect

additional proteins. Thus, the precise role of ATF4 in synaptic

plasticity and memory formation has yet to be determined.

To directly define ATF4’s role in neuronal plasticity, we used

lentivirally delivered small hairpin RNAs (shRNAs) to specifically

interfere with its expression in rodent hippocampal neurons,

long-term cultures, and adult animals. Where possible, we also

used ATF4-null mice. We recently reported that direct ATF4

downregulation reduces the density of dendritic mushroom

spines in vitro and in vivo, accompanied by a decrease in

post-synaptic markers for excitatory glutamatergic synapses

(Liu et al., 2014). These effects were partially mediated by a

reduction in levels of total and active Cdc42, a small Rho family

GTPase involved in regulation of the actin cytoskeleton. Here, we

extend our findings to investigate the role of ATF4 in synaptic

plasticity and memory formation.

RESULTS

ATF4 Downregulation Impairs Long-Term Spatial
Memory and Memory Flexibility without Affecting
Associative Memory and Anxiety-like Behavior
To assess ATF4’s role in hippocampal-dependent behavior and

synaptic plasticity, we used lentivirally delivered shRNAs to spe-

cifically downregulate ATF4 expression in rodent neurons in vitro

and in vivo. These shRNAs efficiently reduce ATF4 protein levels

in cultured neurons, and their actions on dendritic spines and

post-synaptic markers are rescued by shRNA-resistant ATF4

expression constructs (Liu et al., 2014). We confirmed effective

ATF4 knockdown by shATF4 in cultured hippocampal neurons

at 2 weeks after infection (Figure 1A). The infection efficiency

was�90%.We also observed that an shRNA targeted to another

sequence of rat ATF4 had no effect on ATF4 expression (Fig-

ure 1A), and used this as a control (shCTRL2) along with another
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Figure 1. Hippocampal-Specific ATF4

Downregulation

(A) Representative western blot showing ATF4

protein knockdown in primary hippocampal

neuronal cultures infected at 5 days in vitro (DIV)

for 2 weeks with shATF4-lentivirus compared with

shCTRL2-infected and non-infected cultures.

(B) Distribution and expression of GFP in

mouse hippocampus 1 month after infection with

GFP-expressing lentivirus. Sections of lentivirus-

injected animals were immunolabeled with anti-

body against GFP (green) and counterstained with

Topro3 (nuclei, blue). Scale bar, 20 mm.

(C) qRT-PCR analysis of ATF4 mRNA levels in

mouse hippocampus 4 weeks after lenti-shATF4

injection. Data are expressed as mean ± SEM

(shCTRL2 n = 7, shATF4 n = 7; *p < 0.05).

(D) Scheme of the experimental design. Hippo-

campi of C57BL/6 WT male mice (3 months

old) were stereotaxically inoculated with lenti-

shCTRL2, -shCTRL1, or -shATF4. At 4 weeks after

injection, the cognitive function of the animals was

assessed with a battery of behavioral tests and the

mice were then sacrificed for electrophysiological

analyses.
control (shCTRL1) in which five bases of shATF4 were changed

(Liu et al., 2014). To verify infection efficiency and spreading of

the lentiviral particles in vivo, we injected adult mouse hippo-

campi with an empty lenti-GFP vector, sacrificed the mice

1 month later, and assessed GFP expression. This revealed pos-

itive neurons in all regions of the hippocampus, particularly in the

hilus of the dentate gyrus (DG) and in CA3 (Figure 1B). Immuno-

reactivity was also observed throughout CA1 and CA2, whereas

no positive cells were detected in surrounding areas. The infec-

tion efficiency was �60% of total cells and the vast majority of

labeled cells had a neuronal morphology.

Next, we prepared high-titer lentiviruses expressing shATF4 or

shCTRL2 and bilaterally injected them into hippocampi of adult

mice. ATF4 mRNA levels were assessed in the hippocampi by

qRT-PCR after 4 weeks. Compared with shCTRL2-injected

hippocampi, those receiving shATF4 showed a 60% reduction

of ATF4 mRNA levels (Figure 1C). Given these results, we next

evaluated the consequences of hippocampal ATF4 downregula-

tion on learning and memory, and on the electrophysiological

correlates of synaptic plasticity (Figure 1D).

One month after injection of shCTRL1, shCTRL2, or shATF4

lentiviruses, we tested hippocampus-dependent cognition by

conducting a battery of behavioral tests. In the standard Morris

water maze task, in which mice were trained to locate a hidden

platform using extra-maze visual cues, we found that all three

groups learned the task equally well (Figure 2A). After the last

training trial, retention of long-term spatial memory was analyzed

during a probe trial consisting of a 60 s free swim without the

platform. Analysis of the paths revealed that shCTRL1- and

shCTRL2-injected mice spent much more time exploring the

target quadrant (TQ) than the other three quadrants (Figure 2B).

In contrast, shATF4-injected mice spent almost the same
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amount of time searching in each quadrant, suggesting a strong

impairment of reference memory (Figure 2B).

To determine whether other forms of hippocampal-dependent

spatial memory were compromised, we tested the mice for

memory flexibility in a reversal-learning task. We moved the

hidden platform to the opposite quadrant and trained the mice

to reach it in the same manner as in the standard Morris water

maze. In contrast to the initial training period (Figure 2A), on

the second day of reversal training, we saw a significant

decrease in the learning capability of shATF4-injected animals

comparedwith controls (Figure 2C).Whereas the control animals

showed a decreased latency in finding the newplatform position,

the ATF4 knockdown mice did not, pointing to an involvement of

ATF4 in hippocampus-dependent memory flexibility.

We confirmed the behavioral flexibility deficits of shATF4-

injected animals using the delayed matching to place (DMP)

task, which measures the ability to learn a new platform location

in the water maze based on a small number of trials (Zeng et al.,

2001). shCTRL2-injected animals reduced their latency of finding

the new platform position appreciably faster than the shATF4-

injected mice (Figure 2D). This difference was mainly due to

the difference in latency between the first and second trial of

the last two platform positions (Figure 2E).

To rule out the possibilities that the spatial memory deficits in

ATF4-downregulated mice were due to differences in vision,

motivation, or swimming ability, we tested the animals in a

visible-platform task. No differences in latency or speed were

observed among the three groups in tests performed at the

end of the reversal-learning tasks (Figures S1A and S1B) or at

the beginning of the DMP task (Figures S1C and S1D).

ATF4-downregulated animals did not differ from controls in a

fear-conditioning paradigm in which the mice learned to predict



Figure 2. ShATF4-Injected Mice Display Spatial Long-Term Memory Deficits and Memory Inflexibility

(A) Latency in the training phase of the standard Morris water maze test plotted against number of sessions. No difference in learning capacity is detected among

shCTRL1-, shCTRL2-, and shATF4-injected animals (shCTRL1 n = 10, shCTRL2 n = 12, shATF4 n = 9).

(B) Percentage of time spent in each quadrant of the pool during the probe trial (OQ, opposite quadrant; RQ, right quadrant; TQ, target quadrant; LQ, left

quadrant). ShATF4-injected mice spend significantly less time exploring the TQ compared with the shCTRL1- and shCTRL2-injected animals (shCTRL1 n = 10,

shCTRL2 n = 12, shATF4 n = 9).

(C) Latency in the retraining phase of the reversal-learning test is plotted against session number. ShATF4-injected mice take significantly more time to reach the

new platform position compared with shCTRL1- and shCTRL2-injected animals (shCTRL1 n = 10, shCTRL2 n = 12, shATF4 n = 9).

(D) Latency of the first five trials of new platform training in the DMP task. Values are average latencies obtained from the last two training sessions (the third and

fourth platform locations). ShATF4-injected mice take significantly more time to learn new platform positions compared with shCTRL1- and shCTRL2-injected

animals (shCTRL2 n = 8, shATF4 n = 13).

(E) The decrease in latency (saving time) between the first and second trial of each session in the DMP task. Values are average saving times from the last two

training sessions, i.e., the third and fourth platform locations (shCTRL2 n = 8, shATF4 n = 13).

All data are expressed as mean ± SEM (*p < 0.05). See also Figure S1.
an aversive event (foot shock) by associating it with a condition-

ing stimulus (context or sound) 24 hr after training (Figure S1E),

suggesting that ATF4 is not involved in the formation of associa-

tive memory (Contarino et al., 2002). As an internal control, we

tested the animals in the 48 hr cued fear-conditioning paradigm,

an amygdala-dependent task. Again, no differences were found

(Figure S1F).

To determine whether alterations in cognition in ATF4-

downregulated mice are due to or accompanied by alterations

in anxiety-like behavior, we tested them in the open-field task
(Campos et al., 2014). This revealed that all three groups (con-

trols and ATF4 knockdown) spent similar times in the central

area of the enclosure (Figure S1G), with the same number of

entries into this zone (Figure S1H). We further assessed anxiety

using the elevated-plus-maze test (Figures S1I–S1L). No differ-

ences were seen in the time spent in the open and closed

arms (Figure S1I), in the number of entries into the open and

closed arms (Figure S1J), or in the speed and transit time in

the maze (Figures S1K and S1L). Taken together, our behavioral

studies indicate that ATF4 is required for the formation of spatial
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long-term memory and behavioral flexibility, but not associative

memory or anxiety-like behavior.

ATF4 Is Required for Long-Term Potentiation and
Long-Term Depression at CA3-CA1 Synapses
Long-term potentiation (LTP) and long-term depression (LTD)

are considered critical components of hippocampal synaptic

plasticity involved in learning and memory (Shors and Matzel,

1997). We compared these phenomena in acute hippocampal

slices from 4- to 5-month-old mice that had received either

shATF4 or shCTRL2. Similar studies were carried out with

hippocampal slices from 2-month-old ATF4-null mice and

aged-matched controls. We first assessed basal synaptic

transmission by measuring the input/output (I-O) relationship

and paired-pulse facilitation (PPF) at different interstimulus

intervals. We found no differences in the I-O and PPF curves of

ATF4-downregulated (Figures S2A–S2C) and ATF4-null mice

(Figures S2D–S2F) compared with their respective controls.

The magnitude of LTP in the Schaffer collateral-CA1 pathway

elicited by either a strong stimulation protocol (three theta bursts

at 15 s intervals; Figure 3A) or a weaker one (100 Hz for 1 s; Fig-

ure 3C) was significantly reduced in ATF4-downregulated mice

in comparison to controls. We observed similar differences

when we compared LTP in 2-month-old ATF4-null and wild-

type (WT) mice (Figures 3B and 3D).

Because behavioral flexibility deficits have been associated

with LTD deregulation (Nicholls et al., 2008), we examined

ATF4’s role in LTD in the same hippocampal pathway. In slices

from animals treatedwith control shRNA, low-frequency stimula-

tion (1 Hz/15 min) of CA3 neurons induced sustained depression

of synaptic strength in CA1 neurons (Figure 3E). In contrast, this

response was almost fully blocked in slices from ATF4-silenced

animals (Figure 3E). LTD in acute hippocampal slices from ATF4-

null mice was also decreased in comparison to age-matchedWT

animals (Figure 3F). Together, these data strongly support the

idea that ATF4 is required for normal LTP and LTD induction at

CA3-CA1 synapses.

ATF4 Knockdown Reduces AMPAR-Mediated mEPSCs
Glutamatergic neurotransmission is a key component of synap-

tic plasticity mediated primarily by AMPA and NMDA receptors

(Malenka and Bear, 2004). ATF4 knockdown in cultured hippo-

campal neurons did not alter the total protein levels of the

AMPA receptor (AMPAR) subunits GluR1 and GluR2 (Figures

S3A and S3B) or the NMDA receptor subunits NMDAR1,

NMDAR2A, and NMDAR2B (Figures S3C–S3E). We previously

reported that shATF4 reduces the density of post-synaptic

markers (GluR1 and PSD95 puncta) and dendritic mushroom

spines in cultured neurons, and mushroom spine density in

mouse hippocampus (Liu et al., 2014). These changes could

result in decreased glutamatergic synapse function. To test

this, we performed whole-cell patch-clamp recording to mea-

sure AMPAR-mediated miniature excitatory postsynaptic cur-

rents (mEPSCs) independently of action potentials. Both the

amplitude and frequency of the mEPSCs were significantly

reduced (20% and 40%, respectively) in ATF4-downregulated

cultured hippocampal neurons compared with controls (Figures

4A–4C). To confirm that these results were not due to off-target
186 Cell Reports 11, 183–191, April 14, 2015 ª2015 The Authors
effects, we performed a rescue experiment in which the neurons

were co-infected with lentiviruses expressing shATF4 and an

ATF4 transcript (ATF4add) conservatively mutated to render it

unresponsive to shATF4 (Liu et al., 2014). This resulted in knock-

down and overexpression of endogenous and exogenous ATF4,

respectively (Figure 4D). Adding back ATF4 restored both the

frequency and amplitude of mEPSCs to control values (Figures

4A–4C). Although ATF4add overexpression rescued the effects

of shATF4 on the densities of mushroom spines and PSD-95

puncta, ATF4add or ATF4 overexpression itself did not affect

these properties (Liu et al., 2014). The present data also indicate

that ATF4add overexpression does not increase mEPSC fre-

quency or amplitude beyond that observed in control cultures

(Figures 4A–4C).

To test whether the effects of ATF4 on mEPSCs requires its

transcriptional activity, we co-infected cultured hippocampal

neurons with shATF4 and a mutant ATF4 transcript, AT-

F4add/mut, which is not recognized by shATF4 and encodes

a mutant ATF4 that does not bind DNA (Liu et al., 2014). This

results in knockdown of endogenous ATF4 and overexpression

of transcriptionally inactive exogenous ATF4 (Figure 4D).

Whole-cell patch-clamp recordings revealed that, unlike

ATF4add, ATF4add/mut did not reverse the effect of ATF4

knockdown on the frequency and amplitude of mEPSCs (Fig-

ures 4A–4C), suggesting that the transcriptional activity of

ATF4 is required.

When we recorded mEPSCs in CA1 pyramidal neurons in

acute hippocampal slices from 1-month-old ATF4-null mice

(Figures 4E–4G), we observed a robust decrease in mEPSC

frequency, but no significant change in mEPSCmean amplitude.

The reasons for the difference in amplitude effect between the

knockdown and knockout (KO) animals are unclear, but could

reflect compensatory changes in the null animals or differences

in the preparations used (i.e., dissociated cultured rat hippo-

campal neurons versus acute hippocampal slices from ATF4

KO mice). Irrespective of these differences, our results strongly

suggest that maintenance of glutamatergic synapse functionality

requires ATF4 and its transcriptional activity.

DISCUSSION

Our data show that ATF4 downregulation in hippocampal neu-

rons leads to deficits in long-term spatial memory and memory

flexibility. ATF4 knockdown or deletion also leads to profound

impairment in induction of both forms of synaptic plasticity

(LTP and LTD). In addition, whole-cell patch-clamp recordings

revealed that silencing or knockout of ATF4 significantly reduces

the function of glutamatergic synapses. ATF4-null mice were

used whenever possible to confirm the knockdown results; how-

ever, because ATF4 KO causes visual and skeletal problems

(Tanaka et al., 1998) ATF4-null mice could not be tested in hippo-

campal-dependent behavioral tasks.

LTP and LTD at CA3-CA1 synapses are critical components of

synaptic plasticity, which is hypothesized to underlie memory

formation (Disterhoft and De Jonge, 1987-1988; Maren and

Baudry, 1995; Shors and Matzel, 1997). Our data show that

long-term hippocampal ATF4 downregulation leads to impair-

ments in LTP and LTD, and to spatial memory and memory



Figure 3. ATF4 Is Required for LTP and LTD Induction at CA3-CA1 Synapses

(A and B) LTP induction elicited by three theta bursts is significantly reduced in hippocampal slices obtained from animals receiving shATF4 (A, shCTRL2 n = 12,

shATF4 n = 16) and from ATF4 KO mice (B, WT n = 9, KO n = 9). Bar graphs indicate the average of the last 15 min of recordings.

(C and D) LTP induction elicited by 100 Hz for 1 s is significantly decreased in hippocampal slices from animals injected with shATF4 (C, shCTRL2 n = 8,

shATF4 n = 9) and from ATF4 KO mice (D, WT n = 12, KO n = 12).

(E and F) LTD induction elicited by a 15min, 1 Hz stimulus train is decreased in hippocampal slices obtained from animals injected with shATF4 (E, shCTRL2 n = 6,

shATF4 n = 8) and from ATF4 KO mice (F, WT n = 10, KO n = 10).

All field excitatory post-synaptic potentials (fEPSPs) are expressed as mean ± SEM (*p < 0.05). See also Figure S2.
flexibility deficits. The mechanisms underlying these effects may

relate to the significant decrease in mushroom spine density

seen after ATF4 knockdown (Liu et al., 2014). Mushroom spines

are considered to be the most active spines and the substrate

upon which memory is based (Arellano et al., 2007; Schikorski

and Stevens, 1999; von Bohlen Und Halbach, 2009). At the

cellular level, modification of spine number and shape leads to

functional changes at synapses (Bourne and Harris, 2007;

Matus, 1999; Star et al., 2002). In a previous study (Liu et al.,

2014), we showed that an shATF4-mediated reduction in
mushroom spine density correlates with a parallel reduction in

post-synaptic markers for excitatory glutamatergic synapses

(PSD95 and GluR1 puncta).

In agreement with the hypothesis that an shATF4-mediated

reduction in mushroom spine density and excitatory synapses

is reflected in impairment of glutamatergic neurotransmission,

we found a significant reduction in the frequency and amplitude

of AMPAR-mediated mEPSCs in ATF4-downregulated cultured

hippocampal neurons and in mEPSC frequency in hippo-

campal neurons from ATF4-null mice. We also observed that
Cell Reports 11, 183–191, April 14, 2015 ª2015 The Authors 187



Figure 4. ATF4 Knockdown Reduces AMPAR-Mediated mEPSCs and This Is Rescued by Transcriptionally Active, but Not by Transcrip-

tionally Inactive, shRNA-Resistant ATF4

(A and B) Summary bar graphs of the frequency (A) and amplitude (B) of mEPSCs recorded from cultured rat hippocampal neurons infected with lentivirus

expressing shCTRL2 (n = 56, black bars), shATF4 (n = 54, red bars), shATF4+ATF4add (n = 38, cyan bars), or shATF4+ATF4/mut (n = 30, purple bars).

(C) Sample traces of the recordings shown in (A) and (B).

(D) Representative western blot of primary hippocampal neurons infected at 5 DIV for 2 weeks with the indicated lentiviral constructs.

(E and F) Summary bar graphs of the frequency (E) and amplitude (F) of mEPSCs recorded from pyramidal neurons in hippocampal slices from 1-month-old WT

(n = 15, black bars) and ATF4-null mice (n = 11, red bars).

(G) Sample traces of the recordings shown in (E) and (F).

Bars represent mean ± SEM (*p < 0.05). See also Figure S3.
maintenance of spontaneous glutamatergic synapse activity

requires transcriptionally competent ATF4 and that ATF4 over-

expression does not elevate these parameters beyond baseline

values.

Glutamatergic transmission is crucial for both hippocampal

LTP and LTD (Lee et al., 2003a). Our findings suggest that a

reduction or loss of ATF4 in hippocampal neurons causes

decreased mushroom spine density, diminished excitatory syn-

apse numbers, and reduced glutamatergic transmission, which

in turn leads to impaired synaptic plasticity. By what mecha-
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nism(s) does ATF4 knockdown cause these changes? Our prior

data show that ATF4 knockdown leads to increased turnover of

the actin-regulatory protein Cdc42 and to a decrease in neuronal

levels of both total and activated Cdc42 (Liu et al., 2014). Knock-

down of Cdc42 qualitatively mimicked the effects on ATF4

knockdown on densities of mushroom spines and PSD95

puncta. Thus, it appears that the effects of ATF4 downregula-

tion/loss on synaptic plasticity andmemory aremediated at least

in part by a reduction in total and activated Cdc42 levels. This is

consistent with the report that a conditional reduction of Cdc42



in mouse forebrain excitatory neurons led to reduced spine

density, impaired LTP induction, and defective remote memory

recall, with no effect on anxiety-like behavior or contextual

memory (Kim et al., 2014).

We found that, in addition to affecting spatial memory, ATF4

downregulation leads to a significant impairment of behavioral

flexibility and a complete block of LTD. The association between

LTD and behavioral flexibility is supported by findings that mice

lacking NMDAR-dependent LTD exhibit deficits in behavioral

flexibility (Nicholls et al., 2008; Zeng et al., 2001), whereas mice

with enhancedLTDshow improvement in spatial reversal learning

(Duffy et al., 2008). We found that LTD in ATF4-null mice was also

significantly impaired, although less so than in ATF4 knockdown

animals. This difference, which is most likely due to compensa-

tory mechanisms, raises the question as to whether ATF4-null

mice would show behavioral inflexibility; however, this question

cannot be directly addressed due to their blindness.

We did not see effects of ATF4 knockdown on 24 hr contextual

fear conditioning, a hippocampal-dependent paradigm (Phillips

and LeDoux, 1992). This suggests either that ATF4 is not

involved in the formation of associative memory or, since this

task involves a fear component, that other brain regions not

targeted by the lentivirus, such as the amygdala, compensate

for the hippocampal deficit in ATF4 expression.

ApCREB2, the Aplysia homolog of ATF4, was previously

described as an inhibitor of CREB-dependent, long-term facilita-

tion (Bartsch et al., 1995; Lee et al., 2003b), and transgenic mice

expressing a broad-spectrum, dominant-negative inhibitor of C/

EBP proteins in excitatory forebrain neurons show reduced

ATF4 expression, increased induction of synaptic potentiation,

enhanced memory, and impaired LTD (Chen et al., 2003). How-

ever, interpretation of these findings is confounded by a possible

interactionof the inhibitorwithothermembersof theC/EBPfamily.

Phosphorylation of the translation factor eIF2a decreases

overall protein translation and selectively promotes ATF4 trans-

lation (Lu et al., 2004). In several previous studies, Costa-Mattioli

et al. (2005, 2007) examinedmemory and synaptic plasticity after

modifying eIF2a phosphorylation in rodent brains. They found

that knockout of the eIF2a kinase GCN2 or knockin of phosphor-

ylation-resistant eIF2a decreased hippocampal ATF4 by 40%–

50%, and suggested that the observed changes in synaptic

plasticity and memory were due to altered ATF4 levels. Our

study, which focused on direct regulation of ATF4, differs from

those studies in that we consistently observed in both weak

and strong protocols that ATF4 knockdown/deletion diminished

initial LTP induction and had no evident effect on late-phase LTP.

In contrast, Costa-Mattioli et al. (2005, 2007) observed effects on

late-phase LTP when eIF2a phosphorylation was modulated,

and GCN2-null mice showed increased LTP induction in the

weak protocol. They also reported no effect of GCN2 deletion

on LTD. Furthermore, although ATF4 knockdown impairs spatial

long-term memory, but not learning, Costa-Mattioli et al. (2005,

2007) found that GCN2 KO or treatment with the eIF2a phospha-

tase inhibitor Sal003 (which elevates ATF4) diminished both

learning and memory, whereas knockin of phosphorylation-

resistant eIF2a increased both learning and memory. These

differences suggest that the effects of regulating eIF2a phos-

phorylation on synaptic plasticity and memory may be due to
factors other than (or in addition to) modulation of ATF4 expres-

sion. Elevation of eIF2a phosphorylation diminishes overall cap-

dependent protein translation (Holcik and Sonenberg, 2005) and

increases translation of transcripts in addition to those encoding

ATF4 (Scheuner et al., 2001).

A considerable body of work suggests a positive role for ATF4

in memory formation, specifically in consolidation of object

recognition memory (ILL-Raga et al., 2013), formation of fear

extinctionmemory (Wei et al., 2012), andmemory flexibility (Trinh

et al., 2012). These studies targeted pathways such as PERK and

HRI kinases. Additionally, a recent study onAplysia sensorimotor

long-term facilitation (LTF) provided evidence that LTF in this

system requires increased post-synaptic ApCREB2 expres-

sion/activity (Hu et al., 2015). Interestingly, elevating ApCREB2

post-synaptically increased synaptic strength, whereas elevat-

ing it pre-synaptically decreased synaptic strength.

Implicit in our findings is the assumption that the effects we

describe are due to pre-existing changes caused by long-term

reduction/loss of ATF4 expression. That is, ATF4 permissively

regulates the basal machinery required for synaptic plasticity

rather than directly mediating plasticity events. Consistent with

this idea, both ATF4-downregulated and ATF4 KO mice ex-

hibited a significant drop in the induction of both hippocampal

LTP and LTD without evident changes in the late phases of these

events. It remains to be seen whether dynamic changes in ATF4

expression occur during vertebrate learning and memory forma-

tion, and if so, what role they play in these processes.

In conclusion, we find that ATF4 plays an essential role in hip-

pocampal-dependent long-term spatial memory and behavioral

flexibility, as well as in LTP, LTD, and glutamatergic synapse

function. Combining these data with our previously published

findings (Liu et al., 2014), we present a model in which dysregu-

lation of Cdc42 levels in the absence of ATF4 causes reductions

in the densities of dendritic mushroom spines and post-synaptic

GluR1 and PSD95 puncta, which in turn produce a drop in gluta-

matergic synaptic functionality, eventually leading to deficits in

synaptic plasticity and memory.

EXPERIMENTAL PROCEDURES

Mice

All animal studies were performed according to protocols examined and

approved by the Animal Use and Care Committee of Columbia University.

ATF4 KO mice were purchased from The Jackson Laboratory and the colony

was expanded in the Columbia University Animal Facility. WT C57BL/6 male

mice were purchased from The Jackson Laboratory. All animals were main-

tained on a 12 hr light/dark schedule and allowed ad libitum access to food

and water. All experiments were conducted during the light phase and

performed blinded as to the group of subjects.

Surgical Procedures

C57BL/6 male mice (3 months old) were deeply anesthetized with ketamine-

xylazine, placed in a stereotactic apparatus, and injected bilaterally in

the hippocampus with 2 ml of a viral preparation (titers between 107 and

109 IU/ml; �2.45 mm, ±1.8 mm from Bregma, and �2 mm from the outer sur-

face of the skull) via a 31G needle attached to a 50 ml Hamilton syringe, at a rate

of 0.5 ml/min over 4 min.

Behavioral Tests

Detailed procedures for the behavioral tests are described in the Supplemental

Experimental Procedures.
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DNA Constructs

Lentiviral constructs were produced as previously described (Liu et al., 2014).

shRNAs were cloned in pLVTHM vectors, and ATF4add and ATF4add/mut

constructs were cloned in the pWPI vector (Addgene).

Lenti-ATF4add was generated by introducing point mutations into

the recognized site of ATF4 (CCTGACTCTGCTGCTTAT to CCAGAGTCAG

CTGCTTAC) using the QuikChange Site-Directed Mutagenesis kit (Strata-

gene). These point mutations do not change the amino acid coding in the

sequence.

Lenti-ATF4add/mut was derived from lenti-ATF4add by introducing point

mutations into the DNA-binding site (292RYRQKKR298 to 292GYLEAAA298).

Primary Hippocampal Neuronal Cultures and Western Blotting

Details regarding the procedures used for primary hippocampal neuronal

cultures and western blotting are described in the Supplemental Experimental

Procedures.

qRT-PCR

Total RNA was extracted from mouse hippocampi 1 month after lentiviral

infection according to the RNeasy Mini kit (QIAGEN) protocol. mRNA was

then reverse transcribed into cDNA using the First-Strand cDNA Synthesis

System for qRT-PCR (OriGene) according to the manufacturer’s instructions.

Electrophysiology

Detailed electrophysiological procedures are described in the Supplemental

Experimental Procedures.

Statistical Analysis

Data are shown as means ± SEM. For in vivo experiments, comparison

between two groups was performed with a two-tailed unpaired Student’s

t test, and for in vitro experiments a two-tailed paired Student’s t test was

used. Comparison between multiple groups and comparison of curves were

performed using two-way ANOVA, followed by a Bonferroni post hoc test

when applicable. Statistical significance was set at p < 0.05.
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