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SUMMARY

Human age-associated traits, such as cognitive
decline, can be highly variable across the population,
with some individuals exhibiting traits that are not
expected at a given chronological age. Here we pre-
sent differential aging (A-aging), an unbiased method
that quantifies individual variability in age-associated
phenotypes within a tissue of interest, and apply this
approach to the analysis of existing transcriptome-
wide cerebral cortex gene expression data from
several cohorts totaling 1,904 autopsied human brain
samples. We subsequently performed a genome-
wide association study and identified the TMEM106B
and GRN gene loci, previously associated with fron-
totemporal dementia, as determinants of A-aging in
the cerebral cortex with genome-wide significance.
TMEM106B risk variants are associated with inflam-
mation, neuronal loss, and cognitive deficits, even
in the absence of known brain disease, and their
impact is highly selective for the frontal cerebral cor-
tex of older individuals (>65 years). The methodolog-
ical framework we describe can be broadly applied
to the analysis of quantitative traits associated with
aging or with other parameters.

INTRODUCTION

The rate at which human age-associated phenomena advance
in otherwise healthy individuals, termed healthy biological aging,
is highly variable (Deary et al., 2012; Jones et al., 2014; Pitt and
Kaeberlein, 2015). This has been hypothesized to be a conse-
quence, in part, of genetic heterogeneity across the population.
However, specific genetic factors that determine the rate of
normal biological aging remain to be elucidated. Rare Progeria
syndromes are caused by single gene mutations, but these dis-
orders are likely to be mechanistically distinct from the common
healthy aging process (Burtner and Kennedy, 2010). Prior
studies have also identified genetic factors such as apolipopro-
tein E (APOE) that modify the likelihood of extreme longevity, as

with centenarians, using genome-wide association studies
(GWAS) (Deelen et al., 2014). But such extreme longevity may
reflect a selective reduction in the incidence of some major
causes of age-associated mortality, such as atherosclerosis,
rather than an altered rate of biological aging.

The relationship between physiological “healthy” aging and
aging-associated diseases is complex. Pathological hallmarks
of Alzheimer’s disease (AD), which is a progressive dementia
seen primarily in late life, include neurofibrillary tangles and am-
yloid plagues in the CNS, but these changes can also be found in
the CNS of adults without clinical evidence of dementia, albeit to
a lesser degree (Yu et al., 2015). Thus, it has been hypothesized
that some aspect of healthy brain aging may represent a prodro-
mal state to disease pathology. However, by functional criteria
such as cognitive measures, changes associated with healthy
aging appear distinct from those seen in neurodegeneration
(Small et al., 2011).

Here, we describe a quantitative approach, termed differential
aging (A-aging), to evaluate the rate of aging across a cohort of
tissue without prior assumption on the nature of the age-associ-
ated phenotypic changes, based on transcriptome-wide gene
expression analyses. The A-aging trait represents the difference
between an observed level of an age-associated phenotype, as
measured for an individual of a given age, and the level of such a
phenotype that would be predicted for the same individual by
interpolating from a cohort of age-phenotype correlative data.
Transcriptomic or epigenetic analyses have previously been
used to identify age-associated phenotypic changes in a hypoth-
esis-free manner (Bocklandt et al., 2011; Colantuoni et al., 2011;
de Magalhaes et al., 2009; Glass et al., 2013; Hannum et al.,
2013; Kang et al., 2011; Ori et al., 2015; Zahn et al., 2007).
Such descriptive results highlight the biological pathways that
are most affected by aging. To identify genes with a functional
role upstream of the observed age-associated changes and
that would be regulators of the rate of aging, we turned to a ge-
netic approach. Specifically, we performed a GWAS to identify
common genetic variants in the human genome that are associ-
ated with increased or decreased A-aging, based on large-scale
gene expression datasets. Common variants at two genetic loci,
TMEM106B and progranulin, were found to be associated with
an increased rate of biological aging. The effect of TMEM106B
risk variants on A-aging was observed selectively in frontal cor-
tex tissue and most prominently in individuals over 65 years. The
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Figure 1. Aging Rates are Heterogeneous across Individuals within a Cohort

(A) Schematic representation of variability in the relative rate and pattern of progression of age-associated traits as a function of time. In this hypothetical example,
a generic aging trait progresses more rapidly in individual 2 than individual 1, whereas individual 3 displays a bimodal pattern.

(B) Schematics representation of A-aging analysis. Each dot represents, for a single individual, the tissue expression level (x axis) of a hypothetical age-
dependent gene as a function of chronological age (y axis). In this example, expression levels are positively correlated with chronological age across the cohort,
as shown by the regression line. Individuals that display an expression level higher than predicted for their chronological age, such as the sample highlighted in
red, exhibit an estimated biological age higher than their chronological age (positive A-aging). In contrast, samples that display an expression level lower than
predicted for their chronological age, such as the sample highlighted in blue, would be associated with an estimated biological age lower than the chronological
age (negative A-aging). Integration across all age-associated genes constitutes the aggregate A-aging for that individual.

effect of TMEM106B risk variants was found to be selective to
frontal cortex tissue in late life. Further annotation analyses
revealed that the presence of TMEM106B risk variants is asso-
ciated with an increased inflammatory polarization of innate
immune markers, and a reduction in neuronal markers. As the
pro-inflammatory impact of the risk variants was seen even in
the context of isolated innate immune cells, we hypothesize
that this represents a proximal effect of the risk variant. Analysis
of tissue from individuals with neurodegenerative diseases,
including AD, suggested a broader role for TMEM106B in the
CNS response to pathological or age-associated insults.

RESULTS

Data-Driven Quantification of Biological Aging

To investigate potential determinants of the rate of biological ag-
ing, we defined a quantitative trait (termed A-aging) that captures
whether an individual displays age-associated phenotypes that
are more or less marked than expected for his or her true chro-
nological age (Figure 1A). The A-aging trait for a given individual
within a cohort is a theoretical value defined as the difference be-
tween the age as evaluated on the basis of the phenotypic mea-
surements and the true chronological age of the individual, and
thus with the dimension of time (Figure 1B).

We applied this approach using transcriptome-wide gene
expression data but note that other biological datasets could
similarly be used. A-Aging analysis of transcriptomic data is per-
formed in two steps (Figures S1A and S1B, detailed in the Sup-
plemental Information): (1) all transcripts that are correlated in
their expression levels with the chronological ages of individuals
within a given cohort of samples are identified, and (2) for each
individual (or sample) within the cohort, the quantitative trait
A-aging is defined as the difference between an age predicted
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from the aggregate expression levels of the age-dependent tran-
scripts, and the actual age of the individual (Figures 1B and S1).
To address non-linear aspects of biological aging in a facile
manner, cohorts may be subdivided into selected age ranges
(such as late life) to be studied independently.

In the most elementary case, A-aging for an individual may be
quantified based on the analysis of a single gene, the expression
level of which is significantly correlated with age within a given
cohort (Figures 1B and S1). However, such a limited analysis
would most likely reflect gene-specific variations across the
cohort, rather than an aspect of aging. Thus, to capture diverse
age-associated phenotypes within a tissue of interest, A-aging
herein represents an aggregated analysis of gene expression
across the entire transcriptome of each individual (Figure S1,
see the Supplemental Information).

Age-Associated Changes in Gene Expression Patterns

in Human Frontal Cortex

We initially sought to characterize the global effect of aging on
transcriptome-wide gene expression in post-mortem, autopsied
prefrontal cortex tissue samples from individuals free of known
neuropathology (Figures 2A-2C). The correlation between chro-
nological age and gene expression levels was queried in tran-
scriptome-wide microarray datasets from four independent co-
horts (Tgen, Myers et al., 2007; Webster et al., 2009; BrainEqtl,
Gibbs et al., 2010; HBTRC, Zhang et al., 2013; and BrainCloud,
Colantuoni et al., 2011; detailed in STAR Methods and Table S1).
Meta-analysis of the results obtained in the four datasets (n=716
individuals >25 years) identified 3,329 genes that were signifi-
cantly correlated in expression with chronological age (false dis-
covery rate < 5% by linear regression, after correction for gender
and batch effects, among the 10,474 genes present in all four
datasets; see STAR Methods for details; Table S2). Functional
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Figure 2. Transcriptome-wide Analysis Identifies Age-Associated Gene Expression Changes in Human Brain

(A) Age-associated changes in the aggregated expression levels of gene sets that typify different human CNS cell types in prefrontal cortex, as labeled. Tran-
scriptome-wide meta-analysis of age-associated gene expression levels was conducted using four prefrontal cortex datasets; n = 716 neurodegenerative
disease-free individuals >25 years. Mean age-associated fold-changes across gene sets members are plotted (n = 21 per group). Error bars are SEM. *p < 0.05,
***p < 0.001 for linear association between age and aggregated expression levels in a meta-analysis across the four expression datasets. Neurons (red):
Z=-3.93, p=8.47 x 10~5; neurons/oligodendrocytes precursor cells (OPCs) (burgundy): Z = —4.24, p = 2.24 x 10~5; OPCs (purple) Z = —2.27, p = 2.33 x 107%
neurons/astrocytes (orange): Z = —1.89, p = 5.81 x 10~2; endothelial cells (pink): Z = 4.02, p = 5.78 x 10~%; microglia (yellow): Z = 2.93, p = 3.39 x 1073; oli-
godendrocytes (green): Z = 3.97, p = 7.31 x 1075; and astrocytes (blue): Z=5.29, p = 1.25 x 1077,

(B and C) Expression levels of prepronociceptin (PNOC), a representative neuronal gene that is decreased in expression with aging (B) (red) and glial fibrillary
acidic protein (GFAP), a representative astrocyte gene that is increased in expression with aging (C) (blue) as a function of age. Each dot represents an individual
sample; n = 128 individuals of age >25 years from the BrainCloud dataset; regression lines are shown.

annotation revealed an age-associated decrease in the expres-
sion of neuronal genes and a parallel age-associated increase
in the expression of genes characteristic of astrocytes, micro-
glia, and oligodendrocytes, as defined by the molecular signa-
tures obtained by single-cell RNA sequencing (RNA-seq) from
the human brain (Darmanis et al., 2015) (Figure 2A). These obser-
vations are consistent with the progressive age-associated loss
of neurons and their processes, concomitant with astrogliosis
and microglial expansion, as described in neuropathological
studies (Beach et al., 1989; Mosher and Wyss-Coray, 2014).

A detailed examination of individual genes the expression
levels of which are positively or negatively correlated with chrono-
logical age (such as the neuronal gene prepronociceptin or glial
fibrillary acidic protein) nonetheless revealed considerable vari-
ability between tissue samples obtained from different individuals
at any given age (Figures 2B and 2C, Table S2). Consistent with
the A-aging theoretical model presented above (Figure 1B), we
hypothesized that such variability may in part reflect biological
diversity in the aging process, due to genetic or non-genetic
factors. In this model, for any given age-associated gene, some
individual tissue samples may display expression levels that are
higher or lower than expected for their chronological age, in
part as a consequence of accelerated or decelerated biological
aging (Figure 1B).

TMEM106B as a Genetic Determinant of the Rate of
Aging in Human Cerebral Cortex

Using A-aging as a quantitative trait, we next undertook a
GWAS (Figure 3A) in search of genetic modifiers of biological
aging, in a meta-analysis across four transcriptome-wide frontal
cortex gene expression datasets (N = 716 individuals without
known brain pathology; Table S1). A strong association was
observed between A-aging and the SNP variant rs1990622, at

the TMEM106B gene locus in the discovery cohort (p = 2.77 %
1077, n = 716, Figures 3B and S2), which was replicated with
genome-wide significance in the replication cohort (p = 1.68 x
107'%, n = 497, Religious Orders Study and Memory and Aging
Project [ROS-MAP] cohort, see details below, Figures 3B and
S2), leading to a combined association p value of 1.5 x 10~'°
in 1,213 samples (Figure 3B). As this association appeared
most prominently within a dataset composed of older adults
only (>65 years; Tgen dataset; Figure 3A, Table S1), we further
refined the entire meta-analysis by stratifying individuals as
either younger (<65 years) or older (>65 years) adults within all
datasets. This approach revealed an age-dependence in the
association between rs1990622 and A-aging that reached
genome-wide significance in the older but not the younger co-
horts (p = 5.4 x 107'°, N =413 and p = 8.0 x 1072, N = 303,
respectively; Figures 3B, S1, and S2). Analysis of an indepen-
dent, population-based RNA-seq gene expression dataset of
prefrontal cortex samples from older adults, which includes
both unaffected individuals and individuals with neurological
diseases, replicated the association between rs1990622 and
A-aging (ROS-MAP; Chan et al., 2015; p = 1.68 x 1075,
N = 497 samples from individuals >65 years; Figure 3B). Joint
meta-analysis that included all of the above datasets yielded a
combined p value of 2.5 x 10722 for the association between
rs1990622 and A-aging (n = 910 samples; Figures 3C-3E). In
this meta-analysis, a second association was observed at
SNP rs708384 on chromosome 17, which falls at the progranulin
gene locus, but this did not quite reach genome-wide statis-
tical significance after correction for multiple testing (GRN;
p =6.23 x 1077 at rs708384, Figure 3C). Taken together, these
findings strongly support the hypothesis that genetic factors ac-
count for some of the variability seen in the apparent rate of bio-
logical aging traits across the human population.
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Figure 3. Genome-wide Association Study Identifies a Genetic Determinant of Aging Rate in Human Frontal Cortex at the TMEM106B Locus
(A) Schematic of the genetic analysis of modifiers of A-aging in human frontal cortex.

(B) Tabular presentation of the associations observed between rs1990622 genotype at TMEM106B and A-aging through stages of the GWAS. Effects are ex-
pressed in terms of years per minor allele load. See STAR Methods for details on the statistical analyses. NA, not applicable.

(C) Manhattan plot representing the association between A-aging, as quantified in frontal cortex tissue samples from older adults, and each of 468,129 common
SNP variants (meta-analysis of 5 cohorts; Discovery + Replication as in (B) and Table S1; n = 910). The red line corresponds to a threshold (p < 1.06 x 1077) for
genome-wide significance after Bonferroni correction for the multiple SNPs tested. Highlighted in red are the SNPs in the region of interest (chr7:11,783,787-
12,783,787) surrounding the association peaks at the TMEM106B (rs1990622) and GRN loci.

(D) Local Manhattan plot in the region of interest of the TMEM106B gene locus, representing the genome-wide association p value between common genetic
variants and A-aging in older adults frontal cortex samples in a meta-analysis of 5 cohorts (Discovery + Replication, n = 910) after local imputation.

(E) Effect of rs1990622 allele load on A-aging value in a meta-analysis of 910 tissue samples from older neurodegenerative-free individuals. Homozygosity for the
minor protective (PP) allele is associated with a 12-year decrease in A-aging, relative to homozygosity of the risk (RR) allele. N = 182, 438, and 290 for the PP, PR,
and RR genotypes. Mean values are presented. Error bars are SEM. '1'p = 2.74 x 10722 for the effect of “R” allelic load on A-aging by Kruskal-Wallis test, chi-
square = 99.30 with 1 degree of freedom.

(F) Schematic representation of the effect of TMEM106B rs1990622 genotype on brain aging trajectories. Risk allele carriers display an accelerated aging
phenotype in late life (>65 years).

The TMEM106B SNP most strongly associated with increased  the major allele at rs1990622 (A, “Risk”; with a 59.2% allelic fre-
A-aging in the meta-analysis, rs1990622, was previously also  quency in population of European ascent), which in the meta-
associated with frontotemporal dementia (FTD) (Cruchaga et al.,  analysis above is associated to an increase in A-aging (Figure 3A),
2011; Finch et al., 2011; Van Deerlin et al., 2010). Specifically, had previously been showntoincrease therisk of FTD (Van Deerlin
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Figure 4. TMEM106B and Age Affect Cognitive Function in Elderly Individuals

(A and B) Carriers of the TMEM106B A-aging risk-associated haplotype display age-associated cognitive deficits, as assessed by Mini Mental State Examination
(MMSE) in a cross-sectional cohort (Long Life Study) of individuals. Consistent with the A-aging findings, the deficits are seen in older (65-80 years) but not
younger (50-65 years) individuals. rs1060700 was used a proxy for rs1990622 (pairwise linkage disequilibrium: R2 =1, D’ = 1 in the CEU 1000 Genomes datasets).
N =262, 744, and 541, N = 192, 429 and 321 for the homozygous protective-allele (PP), heterozygous (PR), and homozygous risk (RR) genotypes in the 50-65-
and 65-80-year-old age groups, respectively. Mean values are presented. Error bars are SEM. T'p < 0.01 by linear regression for the additive allelic load, cor-
recting for age, gender, and three principal eigenvectors for population stratification.

(C) Carriers of the TMEM106B A-aging risk-associated haplotype display age-associated cognitive deficits, as assessed by a memory recall score in the Health
and Retirement Study. The A-aging-associated genotype was queried using rs1060700 as a proxy for rs1990622 (pairwise linkage disequilibrium: R2=1,D’=1in

the CEU 1000 Genomes datasets).

et al., 2010), as well to reduce the age of onset comparably (Cru-
chagaetal.,2011; Finch etal., 2011). Similarly, localimputation at
the GRN locus revealed that the strongest association with A-ag-
ing was observed for a variant (rs5848, p = 1.85 x 10~8; Figure S3)
previously identified as associated with FTD as well as other
neurodegenerative disorders (Chen et al., 2015; Rademakers
et al., 2008; van Blitterswijk et al., 2014), with the disease-associ-
atedrisk allele being associated withan increase in A-aging. Thus,
the same genetic determinants that modify the rate of apparent
biological aging in the frontal cortex of otherwise healthy individ-
uals also appear to play a significant role in a rare neurodegener-
ative disorder of the frontal cortex.

We next sought to determine whether the effect of TMEM106B
genetic variation on the A-aging endophenotype (Figures 3F and
S4) might be reflected in functional measures of brain aging. We
thus queried the relationship between TMEM106B haplotypes
and cognitive function, as assessed by the Mini Mental State Ex-
amination in a large cross-sectional cohort of genotyped individ-
uals from the National Institute on Aging (NIA) Long Life Family
Study (N = 4,953 individuals; Newman et al., 2011; Barral et al.,
2012). Remarkably, in individuals without diagnosed dementia,
the TMEM106B haplotype associated with a decreased rate of
aging selectively in individuals >65 years in the analysis above
was also associated with better cognitive scores, specifically in
such older individuals (p = 2.8 x 1073, n = 774; Figures 4A and
4B, rs1060700 was used a proxy for rs1990622 as these are
co-inherited, see STAR Methods for details). Similar results
were obtained in a second independent cross-sectional cohort
(Health and Retirement Study; N = 12,507 genotyped individuals;
Juster and Suzman, 1995) in which the TMEM106B haplotype
associated with a decrease rate of aging in our analysis above
was again associated with improved scores in a memory test

specifically among individuals >65 years, but not younger indi-
viduals (p = 1.9 x 1072 in the >65 years age group, n = 5,604;
p = 0.48, in the younger individuals, n = 4432; Figure 4C). These
analyses of cognitive measures support the relevance of our
transcriptomic-based A-aging studies of human frontal cortex
tissue.

The TMEM106B Genetic Variant Modulates Innate
Immune Activation and Neuronal Loss Markers

To assess the impact of the TMEM106B rs1990622 risk allele
load (defined as 0, 1, or 2 risk allele copies, as determined by
SNP genotyping) on cerebral cortex gene expression in detail,
we next compared the transcriptome-wide gene expression
changes observed in the context of increasing risk allele load
(termed the TMEM106B risk-associated transcriptomic signa-
ture of change) to the gene expression changes associated
with chronological aging (termed the age-associated tran-
scriptomic signature of change) in four independent gene
expression datasets from prefrontal cortex tissue of individuals
free of known neuropathology (Tgen, BrainEqtl, HBTRC, and
BrainCloud; Table S1). A meta-analysis demonstrated that
the TMEM106B risk-associated transcriptomic signature of
change was broadly correlated with the age-associated tran-
scriptomic signature of change. Furthermore, this correlation
appeared selective for tissue from older adults (>65 years),
relative to tissue from younger adults (Figures 5A-5C, Tables
S2 and S3).

To gain more insight into the biological pathways that are
affected by the TMEM106B risk variant, we next applied a
gene co-expression network approach, termed whole-genome
co-expression network analysis (WGCNA) (Fuller et al., 2007;
Langfelder and Horvath, 2008), that can functionally probe
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transcriptomic patterns of change. WGCNA is a computational
tool that clusters genes in an unsupervised (hypothesis-free)
manner based on their correlated co-expression, and thus
defines biologically relevant groups of genes that typically
correspond to specific cell types or processes (Langfelder and
Horvath, 2008). WGCNA analysis of a frontal cortical gene
expression dataset from older adults defined five gene clusters
(Figure S5A; Tgen dataset; 179 individuals) that could be cate-
gorized in relation to major CNS cell types: microglia, astroglial,
oligodendroglia, and two different neuron-associated groups.
Assessment of the effect size of the rs1990622 genotype on
the expression level of each of these gene clusters revealed
the greatest impact to be on the microglia-associated gene clus-
ter, which overall is significantly increased in expression with
increased risk allele load. A similar pattern of transcriptome-
wide gene expression change was observed with chronological
aging, as expected. In contrast, other factors (such as gender
or post-mortem interval to time of autopsy) did not significantly
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Figure 5. The Effect of TMEM106B Genetic
Variant on the Transcriptome Appears
Similar to the Effect of Age Exclusively in
Elderly Individuals

(A) Venn diagram representing the number of
genes, the levels of which correlate with age or
TMEM106B risk allele load in cohorts of older
(n = 413) or younger (n = 303) adults from the
“Discovery” datasets (with an association p value
of <0.01 for each factor with same direction of
changes, Figure 3B, Tables S1, S2, and S3). The
effect of the TMEM106B risk allele appears very
different in younger versus older individuals: its
impact on the transcriptome is potentiated in
individuals over 65 years, in whom its global
signature resembles the one associated to chro-
nological age. By contrast, the impact of chrono-
logical age appears marked in both individuals
below or above 65 years.

(B and C) Dot plots display, for each of 15,139 in-
dividual genes (each represented by a single dot),
the degree to which gene expression is correlated
with TMEM106B risk allele load (y axis) versus
the degree to which gene expression is correlated
with chronological age (x axis). Separate analyses
are presented of older (B) (n = 413) or younger
(C) (n = 303) adults from the “Discovery” datasets
(see see Figure 3B, Table S1). Z scores represent
the statistical significance and direction of the age-
or genotype-associated correlations. Z values of
1.96, 2.56, and 3.29 correspond to p values of
0.05, 0.01, and 0.001, respectively. Regression
lines (in red) show that in older individuals
(B), those genes that are more highly corre-
lated (positively or negatively) in expression with
TMEM106b risk allele load (y axis) are also more
highly correlated with age (x axis). Individual genes
characteristic of neurons (red), astrocytes (blue),
and microglia (yellow) are highlighted as examples.

0 5 affect these gene expression categories
in a consistent manner. In a complemen-
tary approach to WGCNA, we functionally
annotated the TMEM106B risk-associ-
ated transcriptomic signature, as well as the age-associated
transcriptomic signature, using previously described human
CNS single-cell RNA-seq data (Darmanis et al., 2015). This anal-
ysis confirmed the microglia gene set to be most increased in
expression in the context of the rs1990622 risk variant; again,
the effect was seen selectively in the older adult cohort (Fig-
ure S5B, Table S3; N = 716 unaffected individuals from Tgen,
BrainEqtl, HBTRC, and BrainCloud cohorts).

Prior studies have associated pathological aging with an
inappropriate polarization of microglia and other innate immune
myeloid cells toward an increasingly pro-inflammatory state
(Deelen et al., 2014; Gabuzda and Yankner, 2013; Hu et al.,
2015; Mosher and Wyss-Coray, 2014; Salminen et al., 2012).
Given the altered expression of microglia-associated genes in
the context of the TMEM106B risk haplotype, we hypothesized
that this may be associated with a selective change in the expres-
sion of microglial inflammatory state-associated (“M1”) or anti-
inflammatory/repair state-associated (“M2”) genes (Figure 6A).
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Figure 6. TMEM106B Modulates Innate Immune Cell Inflammatory Polarization
(A) Schematic of the inflammatory polarization of myeloid cells by pro- or anti-inflammatory factors.

(B) Aggregate cerebral cortical expression levels of gene sets associated with M1-type (red, n = 39 genes) or M2-type (green n = 39 genes) microglia were
quantified for neurodegenerative disease-free individuals homozygous for the risk (RR) or protective (PP) alleles, or heterozygous (PR) for these alleles, at the
TMEM106B locus. Expression was found to increase steadily in all groups over time (presented as percent change per decade); for the M2 gene set, the increase
was significantly less rapid in homozygous carriers of the risk allele, relative to carriers of the protective allele. For each group, median values across the datasets
are presented (n = 4 datasets from the Discovery stage, with 716 individuals in total; see Table S1). Error bars are SEM. Wp <0.001, n.s., p > 0.05 for the effect of
rs1990622 risk allele load by ANOVA, correcting for dataset-specific effects (p = 9.41 x 104, F = 21.41 for 1 degree of freedom and p = 0.737, F = 0.119 for
1 degree of freedom for M2 and M1, respectively).

(C) Effect of rs1990622 genotype or LPS treatment on the aggregate expression levels of M1- and M2-selective genes in human monocyte-derived dendritic cells,
as quantified by Nanostring (GEO: GSE53165). Data are presented as a ratio of the M1/M2 aggregate levels; higher values are thus associated with a pro-in-
flammatory state. Mean values are presented. Error bars are SEM. N = 29/82/49 and 13/51/23 for the RR/PR/PP genotypes in the unstimulated and LPS-treated
groups, respectively. **p < 0.001 treatment effect, fp < 0.05 allelic load association by Kruskal-Wallis test (p = 1.08 x 10732, chi-square = 141.78 for 1 degree of
freedom and p = 1.09 x 1072, chi-square = 9.02 for 1 degree of freedom, respectively).

(D) Effects of rs1990622 genotype or LPS treatment on TMEM106B expression levels in human monocyte-derived dendritic cells, as measured by Affymetrix
Human Gene 1.0 ST Array (GSE53166). Mean values are presented. Error bars are SEM. N = 2/14/7 and 2/14/8 for the RR/PR/PP genotypes in the unstimulated
and LPS-treated groups respectively. ***p < 0.001 for treatment effect by ANOVA, t'p < 0.01 for allelic load association in unstimulated by ANOVA (p=5.0 x 1073,

F = 9.85 for 1 degree of freedom and p = 1.13 x 1072, F = 96.624 for 1 degree of freedom).

Overall, both the M1- and M2-associated gene sets (detailed in
Table S4), as defined by RNA-seq in polarized mouse microglia
(Butovsky et al., 2014), were generally increased in expression
over the course of chronological aging (Figure 6B). TMEM106B
rs1990622 risk allele carriers showed a significantly muted age-
associated increase in the expression of the M2 gene set (Fig-
ure 6B, Table S5). M1 genes showed a trend toward a potentiated
age-associated increase in expression that did not reach statisti-
cal significance in protective allele carriers. Taken together, these
data suggest an “inflammaging” (Franceschi et al., 2007; Giunta
et al., 2008) mechanism in which the TMEM106B risk allele polar-
izes myeloid cells toward a pro-inflammatory stage in the cere-
bral cortex of older individuals.

We extended this analysis of inflammatory gene expression by
additionally querying the effect of the TMEM106B rs1990622 ge-
notype on another human myeloid cell lineage, dendritic cells. In

a gene expression dataset from isolated, unstimulated human
monocyte-derived dendritic cells from genotyped individuals
without known pathology (GEO: GSE53165; Lee et al., 2014),
the presence of the TMEM106B A-aging risk allele was again
associated with an increased pro-inflammatory M1-like gene
expression signature. Furthermore, the effect of the TMEM106B
risk allele appeared non-additive with classical pro-inflammatory
stimuli such as lipopolysaccharide (LPS) treatment (Figures 6C
and S6).

An unexpected observation in the analysis of this dendritic cell
dataset (Lee et al., 2014) was that LPS exposure led to a signif-
icant reduction in the gene expression level of TMEM106B (Fig-
ure 6D). We further note that the TMEM106B rs1990622 risk
allele was itself similarly associated with decreased expression
of TMEM106B mRNA (Figure 6D), suggesting a potential direct
molecular mechanism for the effect of the TMEM106B risk
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Figure 7. Non-genetic Factors Can Modify A-Aging

(A) A-Aging values observed in frontal cortex or cerebellum tissue samples
derived from neurological disease-free, AD, or HD cohorts (Harvard Brain
Bank). A-Aging values are presented relative to the values observed in unaf-
fected individuals for each brain region. Mean values are presented. Error bars
are SEM. N = 154, 345, 170, 124, 269, and 140; **p < 0.001, *p < 0.05 by
Kruskal-Wallis test followed by Dunn’s multiple comparisons test with
the undiagnosed (Und) group in the same tissue; 'fp < 0.001 by Kruskal-
Wallis followed by Dunn’s multiple comparisons test for comparison with
frontal cortex tissue in the same disease category (p = 3.91 x 1078 chi-
square = 91.12 with 5 degrees of freedom for Kruskal-Wallis, with Dunn’s test
p =3.72 x 107" and 9.36 x 108 for AD versus Und and HD versus Und,
respectively in the frontal cortex, p = 1.74 x 1072 for AD versus Und in cere-
bellum and p = 2.71 x 10~ and 1.14 x 10~ for cerebellum versus frontal
cortex in AD and HD, respectively).

(B) Longitudinal analysis of A-aging in serial muscle tissue biopsies from
elderly individuals before and after a 6-month-long vigorous exercise routine
program (GEO: GSE8479). Black dots represent muscle samples from
individuals that did not perform an exercise routine; these data were used
to define the pattern of age-associated gene expression changes within
the cohort. Red dots represent muscle samples taken from elderly individ-
uals before the exercise regimen, whereas blue dots represent muscle
samples from the same individuals after training. The mean A-aging shift
observed after exercise training is —24.43 + 1.94 years (SEM, n = 14 in-
dividuals, p = 1.14 x 108 by paired two-tailed t test).

haplotype on TMEM106B activity. Taken together, these findings
implicate a regulatory circuitry, where TMEM106B activity im-
pacts myeloid cell inflammatory status, and conversely where
myeloid cell inflammatory status impacts TMEM106B activity.

TMEM106B, Inflammaging, and Neurodegenerative
Disorders

To further explore the relationships between A-aging and
age-associated neurodegenerative diseases, we next analyzed
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frontal cortex gene expression datasets from individuals with
a diagnosis of AD or Huntington’s disease (HD). Frontal cor-
tex tissue from such individuals demonstrated significantly
increased A-aging relative to unaffected individuals (Figure 7A,
plus 18.8 and 15.4 years, respectively; HBTRC datasets), and
thus appeared significantly older than expected in terms of
their transcriptomic profiles. As this dataset also includes tis-
sue samples from the cerebellum, we could further extend
the analysis of A-aging to this second brain region. The effect
of either AD or HD on A-aging appeared selective for fron-
tal cortex, relative to cerebellar tissue, consistent with the
neuropathological regional patterns that typify these disorders
(Figure 7A).

Further utilizing this cerebellar gene expression dataset, we
extended the analysis of the association betweenthe TMEM106B
risk allele and A-aging to this brain region. The impact of the
TMEM106B allele on A-aging was significantly less robust in
cerebellar cortex tissue relative to frontal cortex, and a GWAS
analysis in these datasets failed to identify an association of the
TMEM106B alleles with A-aging in cerebellar tissue, in contrast
to frontal cortex tissue (Figure S7; in older individuals from the
same cohorts).

We note that the effect of the TMEM106B risk allele appeared
additive with the effect of AD on A-aging (Figures 7A and S2),
rather than occlusive, suggesting that the mechanisms are
distinct. Consistent with this, previous studies have established
a lack of association between TMEM106B and AD risk (associa-
tion p values for rs1990622 of 0.26 and 0.87 in stage 1 and 2,
respectively, of the Alzheimer Disease Genetics Consortium
GWAS in more than 22,000 individuals; Harold et al., 2009).
Furthermore, APOE alleles (which are major genetic determi-
nants of AD risk) were not associated with an alteration in A-ag-
ing (Table S6).

A broader analysis of 70 neurodegenerative disease-associ-
ated genetic variants (Jun et al., 2016; Lambert et al., 2013;
McMillan et al., 2014; Nalls et al., 2014; Rollinson et al., 2011;
van Es et al., 2009) did not reveal any significant additional as-
sociations with A-aging, beyond TMEM106B and GRN (Table
S6). TMEM106B and GRN share a number of common attri-
butes: both have previously been associated with risk of FTD
(Cruchaga et al., 2011; Finch et al., 2011; Van Deerlin et al.,
2010), with primary hippocampal sclerosis (Aoki et al., 2015),
and with TDP-43 neuropathology in the absence of a clinical
neurological diagnosis (Dickson et al., 2015; Yu et al., 2015).
Furthermore, both genes have been implicated together in the
regulation of lysosomal function (Schwenk et al., 2014; Stagi
et al.,, 2014), and TMEM106B has been reported to regulate
progranulin protein accumulation (Chen-Plotkin et al., 2012).
Consistent with a common pathway of action for these genes,
the risk-associated genetic variants at these two loci showed
a significant genetic interaction in their modulation of A-aging,
in that the effect of GRN rs5848 variants on A-aging was
observed only in carriers of the TMEM106B risk allele, where it
reached genome-wide statistical significance (p = 1.91 x 107°
and 0.48 with N = 689 and 187 in rs1990622 risk allele carriers
and non-carriers, respectively, in Discovery + Replication co-
horts, p = 6.42 x 107'° and 0.97 with N = 1,137 and 296 in
Discovery + Replication Disease cohorts, as defined in Figure 3A
and Table S1).
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The fact that the TMEM106B genetic variant is not associated
with AD risk and that AD genetic risk factors such as APOE4 do
not appear associated with A-aging would suggest distinct phe-
nomena. It moreover argues strongly against the possibility that
we are merely observing a prodromal AD phenotype in individ-
uals with high A-aging values. The effect of the TMEM106B
risk variant on A-aging in AD patients is significant, but as these
patients display markers of accelerated aging, including inflam-
mation and neuronal loss, even independent of TMEM106B, the
pathological relevance of TMEM106B is likely to be limited in this
context.

Non-genetic Modifiers of Aging

To extend the application of our approach to aging beyond the
study of genetic determinants, we further hypothesized that inter-
ventions previously associated with healthy aging, such as exer-
cise, may decrease the apparent biological age, as quantified by
A-aging, in contrast to the increased A-aging seenin pathological
contexts such as AD (de Cabo et al., 2014). As a proof of principle,
we analyzed existing datasets from a longitudinal gene expres-
sion study of serial human muscle tissue biopsies, sampled
before and after vigorous exercise. A-Aging analysis revealed
that muscle tissue from individuals who undertook a vigorous ex-
ercise regimen for 6 months displayed a significant reduction in
A-aging, and thus appeared significantly younger than their chro-
nological age (Figure 7B). A-Aging may thus serve as a useful
biomarker for the evaluation of anti-aging interventions.

DISCUSSION

A-Aging analysis allows for an unbiased quantification of an indi-
vidual's apparent (biological) age, relative to other individuals
within the same cohort. A-Aging differs qualitatively from other
aging analysis frameworks such as the “epigenetic clock”
(Bocklandtetal.,2011; Lu et al., 2016), which assumes that aging
impacts the expression of the same genes, and the same cellular
processes, through all stages of life and in every tissue or context.
By contrast, A-aging analysis allows a context-dependent identi-
fication of age-associated genes, enabling tissue- or age-range-
specific processes to be detected and taken into account. The
lack of an association between TMEM106B or GRN genetic
variants and pleiotropic age-associated markers such as the
“methylation clock” or telomere length suggests that TMEM106B
and GRN impact the rate of healthy aging in prefrontal cortex
independently of such factors. While in the present work we pri-
marily used transcriptome-wide expression data to study aging
in brain, subsequent studies may apply this approach to other tis-
sues, other data types, or more systematically query the overlap
with other aging-associated markers and the tissue specificity of
the effect of TMEM106B and GRN on healthy aging.

Our GWAS identified two genetic loci, at TMEM106B and
progranulin, which function cooperatively to modify A-aging in
the cerebral cortex of older individuals. Genetic variants previ-
ously associated with extreme longevity, such as APOE (Deelen
et al., 2011, 2014), were not associated with the rate of healthy
aging or with age-associated inflammation in the present study.
Our findings underscore the genetic differences between mech-
anisms that govern healthy aging in a given tissue and those that
underlie extreme longevity.

The relationship between normal aging and neurodegenera-
tive disorders appears complex. The two gene loci we identified
as modifying A-aging have previously been associated with FTD
risk. It appears extremely unlikely that our results are merely a
reflection of “early onset FTD” in the cohorts we analyze for
several reasons: first, FTD is an extremely rare disease (its occur-
rence rate is 10 per 100,000 individuals in individuals aged 60-69
years; Knopman et al., 2004; Knopman and Roberts, 2011); the
prevalence of contaminating case of FTD (or even of prodromal
FTD) in any of the cohorts we studied are thus most likely very
low, while the association between TMEM106B genotype and
A-aging is seen strongly in all of those cohorts. Furthermore,
the “Unaffected individuals” in these cohorts were neuropatho-
logically assessed; an FTD case would very likely have been
identified and filtered out.

A potential explanation for the dual association of those loci
with both FTD risk and A-aging is that the proximate effect of
these risk variants is to cause the tissue substrate for FTD
(frontal cortex) to appear older, and thus secondarily to in-
crease the prevalence of FTD (as prevalence of FTD is highly
age dependent). Although there are pathological criteria that
differentiate healthy aging from disorders such as AD or FTD,
certain processes are common, such as inflammation. Further-
more, neurodegenerative disease hallmarks, such as TDP-43
aggregates, are seen even in apparently healthy individuals,
albeit to a limited extent (Beecham et al., 2014; Crary et al.,
2014; Yu et al., 2015). Indeed, TMEM106B risk variants have
been associated with increased TDP-43 aggregates in neuro-
pathology-based association studies of apparently healthy
older individuals (Dickson et al., 2015; Yu et al., 2015). We hy-
pothesize that the selective role of TMEM106B in the aging
frontal cortex may reflect unique stressors present in this
tissue late in life, such as the accumulation of inflammatory
cell debris or protein aggregates. The TMEM106B-progranulin
pathway may modulate the response to such stressors both
during healthy aging and in the context of neurodegenerative
disease (Figure 6C) (Martens et al., 2012; Tanaka et al., 2013;
Yin et al., 2010). Further studies in model systems may help
to unravel underlying cellular mechanisms. The identification
of TMEM106B risk variant-dependent phenotypic changes in
peripheral circulating myeloid cells (Figures 6A, 6C, 6D, and
S5) are of particular interest as they open the perspective of
peripheral biomarkers of brain aging in monocytes or macro-
phages. Finally, although our analysis focused on the role of
TMEM106B in inflammation, we do not exclude a function in
neurons (Brady et al., 2013; Chen-Plotkin et al., 2012; Schwenk
et al., 2014).
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Tgen Expression (Myers et al., 2007; Webster et al., 2009) GEO: GSE15222

BrainEqtl Expression (Gibbs et al., 2010) GEO: GSE30272

BrainCloud Expression (Colantuoni et al., 2011) GEO: GSE30272

HTRC Expression and Genotypes (Zhang et al., 2013) Synapse: syn4505

ROS-MAP Expression (Chan et al., 2015) Synapse: syn3388564

Tgen Genotypes (Myers et al., 2007; Webster et al., 2009) NIAGADS: NG0028

ROS-MAP Genotypes (Chan et al., 2015) NIAGADS: NG0029

BrainEqtl Genotypes (Gibbs et al., 2010) dbGap: phs000249

BrainCloud Genotypes (Colantuoni et al., 2011) dbGap: phs000417

Dendritic cells expression (Lee et al., 2014) GEO: GSE57542

Software and Algorithms

PLINK 1.9 (Chang et al., 2015) https://www.cog-genomics.org/plink2

Metal (Willer et al., 2010) http://csg.sph.umich.edu/abecasis/metal/

LocusZoom (Pruim et al., 2010) http://locuszoom.org/

Impute 2 (Howie et al., 2009) https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html

R WGCNA package (Langfelder and Horvath, 2008) https://cran.r-project.org/web/packages/
WGCNA/index.html

Delta-aging R function This paper STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Asa Abeliovich (2a900@
columbia.edu).

METHOD DETAILS

Gene Expression Analysis in Human Brain

Studies described in this manuscript used de-identified data and were reviewed by the Columbia University Medical Center IRB. All
data manipulations and analyses were done using R statistical software. Within each dataset independently of the others, expression
level matrixes were log-centered before further manipulation for homogenization. The effect of chronological age on each probe/
gene was assessed using R Im() function, with gender, batch and post-mortem interval as correlates. The effect of rs1990622
genotype was similarly studied, with age, gender, batch and post-mortem interval as correlates. The effects are studied in either
all individuals (age >25 years old), in older adults (age >65 years old for all datasets except BrainCloud for which individuals with
age >50 years old are included, as only n = 9 individuals are aged of more than 65 years) and in younger adults (age >25 years
old and <65 years old for all datasets except BrainCloud for which individuals with age >25 years old and <50 years old are included),
as indicated in legends. Meta-analysis across different datasets were carried at a gene-level using Stouffer’s weighted Z-score
method.

A-Aging Analysis

For each individual sample an associated A-aging numerical value, expressed in time units is evaluated. It corresponds to the aggre-
gation of A-aging values evaluated for each gene found to be significantly correlated with age in the studied dataset (with FDR = 5%).
For such a given gene G, the gene-specific A-aging value in a sample from individual | corresponds to the difference between the age
as it would be imputed on the sole basis of gene G expression level in the studied sample, and the actual chronological age of I.
Formally, itis expressed as 4g = (;iG/ where ag is the coefficient of the linear regression analysis of gene G expression levels in function
of age across samples of the studied dataset and o, the residual expression level of gene G in individual | in the context of the above-
mentioned linear regression. Integrating over the N genes with expression levels significantly correlated with age in the dataset of in-

terest, the A-aging value for individual | is expressed as 4, :ﬁ g=1% . Detailed explanations are provided below.
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Theory and Calculation of Delta-Age

Principle

At the level of a gene whose expression level is positively correlated with age within a given cohort, we define the Delta Age of a given
individual as the difference between the actual (chronological) age and the biological age as is would be imputed for this individual on
the basis of gene G expression level data across the entire cohort.

Figure S8 presents a theoretical case for illustration. Individuals, represented as dots, are plotted as a function of their chronolog-
ical age (X-axis) and their measured expression level for gene G (Y-axis). The dotted line corresponds to the regression line of Gene
G expression levels as a function of chronological age across the entire cohort. A graphical interpretation shows that dots that are
above this regression line (in red) correspond to individuals with expression levels of G higher than expected for their chronological
age, while those below (in blue) to individual with G levels lower than expected for their chronological age.

In Figure S8, the biological age imputed on the basis of gene G expression level is presented for 2 individuals by green arrows,
corresponding to the projection on the age axis through the regression line. The yellow lines correspond to the chronological age,
and the Delta-age represents the difference.

Formal Calculation of Delta-Age for a Given Individual and a Single Gene
The linear regression across individuals of the expression level of a gene G (Exprg) in function of chronological age (ChrAge) yields a
regression line defined by the following equation:

Exprg =ag.ChrAge + bg (Equation 1)

Where ag and bg are respectively the factor and constant associated to gene G expression levels in the linear regression in function of
age. As graphically illustrated on Figure S1, for a given individual / the expression level of gene G, Exprg, can be expressed by both
expression:

Exprg)=ag.ChrAge; + bg + o, (Equation 2a)

where og  is the residual expression level of gene G in individual | after the above-mentioned linear regression
and

Exprg,=ac.AppAgeg, +bg (Equation 2b)

where AppAgeg, is the apparent age of individual | for gene G.
As a consequence:

Ag;=AppAgeg, — ChrAge = ? (Equation 3)
' G

The Delta-Age for an individual | for a given gene G is expressed as the ratio between the residual value for the individual and the
coefficient obtained by linear regression of the expression level of gene G in function of Age across individuals.
Formal Calculation of Delta-Age across Multiple Genes
For a given individual |, the global Delta-age 4, is obtained by integration of all the gene-specific Delta-Age 4, over all genes which
expression levels are found to be correlated with chronological age during the original linear regression:

A ] ZN:A ] XN:GG” (Equation 4)
I_NG:1 GJ_NG:1aG-’ q

QUANTIFICATION AND STATISTICAL ANALYSIS

Genotype Association Analysis

Genotypes datasets were downloaded from dbGap (phs000249 and GSE30272 for BrainEqtl and BrainCloud respectively),
NIAGADS (NG00029 and NG0028 for ROS-MAP and Tgen) or Synapse (phs000417 for HBTRC). All subsequent data manipulations
and analyses were done using PLINK 1.9 software (https://www.cog-genomics.org/plink2, (Chang et al., 2015)). Meta-analyses were
carried using Metal software (Willer et al., 2010). Manhattan plots were drawn using R ggman package or LocusZoom (Pruim et al.,
2010). Genotype imputation at targeted loci was performed using Impute2 software (Howie et al., 2009) and 1000 Genomes Phase |
integrated haplotypes. For cognition association analysis, genotypes and cognitive assessment phenotypes datasets were down-
loaded from dbGap (phs000397 and phs000428 for Long Life Family Study and Health and Retirement Study respectively). Associ-
ation between genotype and cognitive scores were tested using plink with the following covariates: age, gender and 3 population
eigenvectors as defined by PCA.

Gene Co-expression Analysis

Unsupervised clustering was carried using R WGCNA package (Langfelder and Horvath, 2008) with the following settings: power = 8,
TOMType = “signed”, minModuleSize = 40, reassignThreshold = 0.05, mergeCutHeight = 0.25. Enrichment analysis for the identified
clusters was done using WGCNA R package built-in userListEnrichment function and associated brain cell types categories.
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Human Dendritic Cell Analysis

Only individuals described as from European ascent were included in the analysis. The effects of treatment and rs1990622 on M1-
or M2- related genes or on TMEM106B mRNA levels were studied by R by Kruskal-Wallis test or ANOVA, depending on the
normality of the distribution and the similarity of variance between the groups as assessed using Shapiro and Levene tests
respectively.

DATA AND SOFTWARE AVAILABILITY

The R annotated code for A-aging calculation and the custom dependent functions are provided below, with the R code being
italicized:

##Delta Calculation using a gene expression matrix ExprNumLog with expression probes as rows, samples as columns and
expression levels in a log-scale.

## Age and Gender (or additional covariates) are provided as vectors corresponding to the organization of the samples in the
expression matrix columns.

## Coord_Temp defines which samples —defined by their column coordinates - are to be included in the analysis. By default, all
samples are included:

Coord_Temp<-1:length(ExprNumLogl[1,])

##The expression matrix is normed and centered. Its values correspond to Exprg, in Equations 2a and 2b above.
Mtemp<-CentreNormeDoubleGenesSdIind(ExprNumLog[,Coord_Temp])

##A temporary matrix Genes_ResidualsTemp is created to store the residual values for each probe/sample pair after linear regres-
sion analysis for age and gender (and other potential experimental cofactors such as Pmi, Batch, ...). This matrix has the same size
and structure as ExprNumLog. Its values corresponds to the og, in Equations 2a, 3 and 4 above.
Genes_ResidualsTemp<-matrix(0,length(Mtempl[,1]),length(Coord_Temp))

##3 matrices are created to store for each probe the effect of age and gender. Factor_AgeGender, Stat_AgeGender and
Pval_AgeGender will respectively store in columns 1/2 the estimated coefficient, t-statistic and corresponding p-value of the as-
sociation with age/gender for the expression level of each probe, as determned by R’s Im() function summary. Those matrices
have the same number of rows as ExprNumLog (1 per probe) and 2 columns (Age/Gender effects). The values stored in
Factor_AgeGender correspond to the ag in Equations 1, 2a, 2b, 3 and 4 above.
Pval_AgeGender<-matrix(NA,length(Mtemp[,1]),2)

Factor_AgeGender<-matrix(NA,length(Mtempl[,1]),2)

Stat_AgeGender<-matrix(NA,length(Mtemp[,1]),2)

##Each probe/row of the centered-normed expression matrix Mtemp is queried for the linear association of its levels with Age
and Gender using R’s Im() function. The results are stored in Genes_ResidualsTemp, Pval_AgeGender, Stat_AgeGender and
Factor_AgeGender.

for (i in 1:length(Mtemp[,11))

{

##The linear regression below corresponds to the one described in Equation 1 above, with the addition of Gender as a covariate.
Other covariates could be added at this stage (Batch, Pmi...).
y<-Im(Mtempli,]~Age[Coord_Temp]+Gender[Coord_Temp],na.action=na.exclude)

Genes_ResidualsTempli,]<-residuals(y)

Pval_AgeGenderf[i,1]<-t(summary(y)[[4]][2:3,4])

Stat_AgeGenderf[i, 1]<-t(summary(y)[[4]][2:3,3])

Factor_AgeGender]i,1]<-t(summary(y)[[4]][2:3,1])

}

##For each sample, the Deta-Age value is calculated using the residual expression levels after linear regression for age and
gender. This corresponds to Equation 4 above. The genes included in the calculation are the one found to be significantly
associated with age in the regression analysis. 3 false-discovery rate cut-off thresholds for the inclusion of genes are considered:
fdr = 1%, 5% or 10%. Deta-Age values are calculated independently for each of them.

## The expression SeuilPos(1-p.adjust(Pval_AgeGender], 1], method = “fdr”),0.99) is used to select the genes that are associated
with age with fdr = 1%: it returns a vector which length equals the number of probes in the original expression matrix, with binary
values of 1 if the probe’s level is linearly correlated with age or 0 if not, for the considered significance level.
DeltaAge_Div_Age_Factors_FDR1pc<-as.numeric(t(t((Genes_ResidualsTemp)%*%(SeuilPos(1-p.adjust(Pval_AgeGender[,1],
method = “fdr”),0.99)/Factor_Agel[,1])/sum(SeuilPos(1-p.adjust(Pval_AgeGender[,1], method = “fdr”),0.99))))
DeltaAge_Div_Age_Factors_FDR5pc<-as.numeric(t(t(Genes_ResidualsTemp)%*%(SeuilPos(1-p.adjust(Pval_AgeGender  [,1],
method = “fdr”),0.95)/Factor_AgeGender[,1])/sum(SeuilPos(1-p.adjust(Pval_AgeGender[,1], method = “fdr”),0.95))))
DeltaAge_Div_Age_Factors_FDR10pc<-as.numeric(t(t(Genes_ResidualsTemp)%*%(SeuilPos(1-p.adjust(Pval_AgeGender[,1],
method = “fdr”),0.9)/Factor_AgeGender[,1])/sum(SeuilPos(1-p.adjust(Pval_AgeGender[,1], method = “fdr”),0.9))))
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## Object such as DeltaAge_Div_Age_Factors_FDR5pc are the final output, being vector of length equal to the number of samples
included in the analysis, containing the Differential-Aging values for each individual. Such values are later used as quantitative trait
in genetic analysis.

##Delta Calculation from a gene expression matrix ExprNumLin with expression probes as rows, samples as columns and expres-
sion levels in a linear-scale. The process is similar to the one described into detail above, except for the creation of Mtemp at line
#2, for which the function CentreNormeDoubleGenesLogSdind is used instead of CentreNormeDoubleGenesSdind, with the
consequence to first log-transforming of the expression matrix before norming/centering it.

##NOTE: due to the log-transformation step, linear expression level matrix can contain only strictly positive values. Among the
strategies to enforce this: 1)Rows/probes containing zero/negative values can be filtered out, 2)The whole expression matrix
can be offset by its minimal value +1 (ExprNumLin<- ExprNumLin+min(ExprNumLin)+1), ...
Coord_Temp<-1:length(ExprNumLin[1,])

Mtemp<-CentreNormeDoubleGenesLogSdInd(ExprNumLin[,Coord_Temp])
Genes_ResidualsTemp<-matrix(0,length(Mtemp[,1]),length(Coord_Temp))

Pval_AgeGender<-matrix(NA,length(Mtemp[,1]),2)

Factor_AgeGender<-matrix(NA,length(Mtempl[,1]),2)

Stat_AgeGender<-matrix(NA,length(Mtemp[,1]),2)

for (i in 1:length(Mtemp[,1]))

{

y<-Im(Mtempli,]~Age[Coord_Temp],na.action=na.exclude)

Genes_ResidualsTemp]i,]<-residuals(y)

Pval_AgeGenderli,1]<-t(summary(y)[[4]][2,4])Stat_AgeGender[i, 1]<-t(summary(y)[[4]][2,3])
Factor_AgeGender(i,1]<-t(summary(y)[[4]][2,1])

}

DeltaAge_Div_Age_Factors_FDR1pc<-as.numeric(t(t(Genes_ResidualsTemp)%*%(SeuilPos(1-p.adjust(Pval_AgeGender[,1],
method = “fdr”),0.99)/Factor_AgeGender[,1])/sum(SeuilPos(1-p.adjust(Pval_AgeGender[,1], method = “fdr”),0.99))))
DeltaAge_Div_Age_Factors_FDR5pc<-as.numeric(t(t(Genes_ResidualsTemp)%*%(SeuilPos(1-p.adjust(Pval_AgeGender[,1],
method = “fdr”),0.95)/Factor_AgeGender[,1])/sum(SeuilPos(1-p.adjust(Pval_AgeGender[,1], method = “fdr”),0.95))))
DeltaAge_Div_Age_Factors_FDR10pc<-as.numeric(t(t(Genes_ResidualsTemp)%*%(SeuilPos(1-p.adjust(Pval_AgeGender|,1],
method = “fdr”),0.9)/Factor_AgeGender],1])/sum(SeuilPos(1-p.adjust(Pval_AgeGender[,1], method = “fdr”),0.9))))

Custom Dependent Functions
## CentreNormeDoubleGenesSdind
CentreNormeDoubleGenesSdInd<-function (Matrix)
{
Mout <- Matrix
for (i in 1:length(Matrix[, 1])) {
A <- sum(Moult[i, ])/length(Mout[i, ])
Mout][i, ] <- (Mout[i, ] - A)
}
for (j in 1:length(Matrix[1, 1)) {
B <- sum(Moutl[,j))/length(Moutl,j])
Mout[,j] <- (Mout[,j] - B)/sd(Mout[,j])
}
Mout
}
## CentreNormeDoubleGenesLogSdInd
CentreNormeDoubleGenesLogSdInd<-function (Matrix)
{
Mout <- Matrix
for (i in 1:length(Matrix[, 1])) {
Mout[i, ] <- log((Matrix[i, ]), 2)
A <- sum(Mout[i, ])/length(Mout[i, ])
Mout[i, ] <- (Mout[i, ] - A)
}
for (j in 1:length(Matrix[1, 1)) {
B <- sum(Moutl[,j])/length(Mout[,j])
Moutl,j] <- (Mout[,j] - B)/sd(Moutl,j])
}
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Mout

}

##SeuilPos
SeuilPos<-function(x,s)
{m<-max(x,na.rm=TRUE)
Pos(ceiling((x-s)/m))}
##Pos

Pos<-function(x)
{(x+abs(x))/2}
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