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Abstract Many neurodegenerative disorders are character-
ized by the aberrant accumulation of aggregate-prone pro-
teins. Alzheimer’s disease (AD) is associated with the buildup
of β-amyloid peptides and tau, which aggregate into extracel-
lular plaques and neurofibrillary tangles, respectively. Multi-
ple studies have linked dysfunctional intracellular degradation
mechanisms with AD pathogenesis. One such pathway is the
autophagy–lysosomal system, which involves the delivery of
large protein aggregates/inclusions and organelles to lyso-
somes through the formation, trafficking, and degradation of
double-membrane structures known as autophagosomes.
Converging data suggest that promoting autophagic degrada-
tion, either by inducing autophagosome formation or enhanc-
ing lysosomal digestion, provides viable therapeutic strat-
egies. In this review, we discuss compounds that can
augment autophagic clearance and may ameliorate
disease-related pathology in cell and mouse models of
AD. Canonical autophagy induction is associated with
multiple signaling cascades; on the one hand, the best
characterized is mammalian target of rapamycin (mTOR).
Accordingly, multiple mTOR-dependent and mTOR-
independent drugs that stimulate autophagy have been
tested in preclinical models. On the other hand, there is
a growing list of drugs that can enhance the later stages
of autophagic flux by stabilizing microtubule-mediated
trafficking, promoting lysosomal fusion, or bolstering
lysosomal enzyme function. Although altering the

different stages of autophagy provides many potential
targets for AD therapeutic interventions, it is important
to consider how autophagy drugs might also disturb the
delicate balance between autophagosome formation and
lysosomal degradation.
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Introduction

Alzheimer’s disease (AD), like many neurodegenerative dis-
eases, is largely characterized by the aberrant accumulation of
endogenous proteins, resulting in the formation of cytotoxic
aggregates and inclusions. Multiple lines of evidence have
shown that intracellular degradation mechanisms can be acti-
vated to remove pathological forms of these proteins, and thus
serve as viable druggable targets. One such pathway is the
ubiquitin-proteasome system, which breaks down short-lived
and soluble proteins. While the ubiquitin-proteasome system
degrades disease-linked proteins associated with neurodegen-
erative disease [1, 2], the narrow pore of the proteasomal
barrel may impede clearance of larger protein oligomers and
aggregates [3]. In contrast, the autophagy–lysosome system
degrades long-lived and large protein complexes and organ-
elles through a multistep process that requires a fine balance
between initial induction and end-stage degradation. Dysfunc-
tion at either end of the pathway has been linked to AD
pathogenesis [4, 5], thus providing multiple targets for phar-
macological intervention. This review focuses on the different
stages of autophagic clearance as targets for AD therapeutics,
which are also relevant to other proteinopathies associated
with neurodegenerative disorders.
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Autophagic Process and Machinery

Autophagy is a highly conserved pathway that delivers intra-
cellular cytoplasmic components to lysosomes. Three distinct
forms have been identified based on their mode of delivery to
lysosomes: macroautophagy, chaperone-mediated autophagy,
and microautophagy [6–9]. Macroautophagy (herein referred
to as autophagy) involves the formation, trafficking, matura-
tion, and subsequent degradation of double-membrane struc-
tures known as autophagosomes. The cumulative process is
referred to as autophagic flux and is essential for neuronal and
brain health. Disruption of any of these highly regulated steps
will result in incomplete autophagic digestion and impaired
autophagic flux, and represents distinct targets for drug devel-
opment. Following induction, an isolation membrane (also
known as a phagophore) elongates to engulf damaged organ-
elles and proteins, and encloses to form an autophagosome.
Autophagosomes can fuse directly with lysosomes to form
autolysosomes, or, alternatively, with late endosomes/
multivesicular bodies to form amphisomes. These acidified
structures fuse with lysosomes, where their cargo and inner
membrane are digested by lysosomal hydrolases [10] (Fig. 1).
To date, 36 autophagy-related genes that are essential for
autophagosome biogenesis have been identified in yeast
[11], and many have known mammalian orthologs [12, 13].

Regulation of Autophagy

Mammalian target of rapamycin (mTOR) is a ubiquitously
expressed protein kinase at the center of a complex signaling
network that regulates mRNA translation [14], ribosome bio-
genesis [15], metabolism [16], and autophagy [17]. mTOR is
part of 2 core complexes: the mTOR complex 1 (mTORC1),
which includes regulatory-associated protein of mTOR, and
the mTOR complex 2 (mTORC2) [18]. mTORC1 plays a
major role in autophagy regulation through interactions with
serine/threonine kinase autophagy-related protein (Atg)1 or its
mammalian ortholog, Unc-51 like kinase 1 (ULK1).
ULK1 forms a protein complex with Atg13 and FAK-
family interacting protein of 200 kDa (FIP200). Under
basal conditions, mTORC1 binds directly to the ULK1
complex to suppress its activity [19–21]. However, ami-
no acid deprivation or pharmacological inhibition of
mTOR initiates ULK1–FIP200–Atg13 dissociation [19,
22], and enhances its interaction with the energy sens-
ing kinase adenosine monophosphate-activated protein
kinase (AMPK) [23, 24]. AMPK, in turn, activates
ULK1 [24], and also directly inhibits mTOR through
phosphorylation of tuberous sclerosis complex 2 and
regulatory-associated protein of mTOR [25–27]. There-
fore, both mTOR inhibitors and AMPK activators can
be used to regulate positively ULK1 [28–31].

Nucleation

Until recently, little was known about how the ULK1–
FIP200–Atg13 complex was involved in the initiation of
autophagosome formation. Beclin 1, the mammalian ortholog
of Atg6, is essential for isolation membrane nucleation. It
forms a core complex with Atg14L, (activating molecule in
Beclin 1-regulated autophagy (AMBRA1), p150, and
hVps34/class III phosphatidylinositol 3-kinase (PI3K), which
is tethered to the cytoskeleton through the association between
AMBRA1 and dynein motor complex. ULK1 phosphoryla-
tion of AMBRA1, releases the Beclin 1/PI3K complex so that
it can be translocated to the endoplasmic reticulum (ER),
which is thought to be the site of autophagosome formation
[32–34] (Fig. 1). Atg14L directs the Beclin 1/PI3K complex
to autophagosomes by identifying curved membrane struc-
tures with a high content of phosphatidylinositol 3-phosphate
and is also involved in the maintenance of membrane curva-
ture [35]. While Beclin 1 interaction with UVRAG induces
autophagy [36], RUN domain and cysteine-rich domain con-
taining Beclin 1-interacting protein binds with Beclin 1 to
inhibit autophagy [37].

The ULK1–FIP200–Atg13 complex plays an essential role
in recruiting membranes to phagophore assembly sites in
yeast or preautophagosomal structures in mammals. In yeast,
Atg1 mediates the trafficking of Atg9 [38], which is an inte-
gral membrane protein critical for autophagosome formation
that cycles between the phagophore assembly sites and cyto-
sol. In mammals, Atg9 cycles between the trans-Golgi net-
work and late endosomes [38], and requires Atg2 and trypto-
phan–aspartic acid (WD)-repeat protein interacting with
phosphoinositides, as well as the Beclin 1/PI3K complex,
for its normal function [39]. Tryptophan–aspartic acid
(WD)-repeat protein interacting with phosphoinositides and
Atg2 bind to phosphatidylinositol 3-phosphate on
phagophores and autophagosomal membranes [40], and are
thought to mediate the conversion of omegasomes
(phosphatidylinositol 3-phosphate-enriched ER mem-
brane structures) to autophagosomes [41].

Elongation, Closure, and Cargo Recruitment

Autophagosomal membrane elongation involves two
ubiquitin-like conjugation reactions. Atg12 and Atg8 are both
conjugated by E1-like activating enzyme, Atg7, but are proc-
essed by 2 different E2-like conjugating enzymes (Atg10 and
Atg3, respectively). Atg12 is conjugated with Atg5 [42], and
noncovalently binds with Atg16L to form a complex that is
localized to elongating isolation membranes [43, 44]. Small
GTPase protein, Rab5 facilitates Atg12–Atg5 conjugation
[45, 46].

Yeast Atg8 has several mammalian orthologs, including
microtubule-associated protein 1A/1B-light chain 3 (LC3),
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which is cleaved at the C-terminal and retrieved from
nonautophagosomal membranes by Atg4 to form cytosolic
LC3-I [47]. LC3-I conjugation to phosphatidylethanolamine
is facilitated by the unique protein-lipid E3-like activity of the
Atg12–Atg5•Atg16L complex to form lipidated LC3-II
[48–51]. Lipidated LC3-II association with isolation
membrane is required for elongation and closure of
autophagosomal membrane, and remains bound to the
autophagosome until it fuses with lysosomes [52],
whereas the Atg12–Atg5•Atg16L complex dissociates
upon autophagosomal closure [53] (Fig. 1).

Sequestosome1/p62 is a multifunctional scaffolding pro-
tein commonly found in ubiquitinated inclusion bodies and
rapidly accumulates when autophagy is suppressed [54]. p62
has multiple protein–protein interaction motifs and binds both
polyubiquitinated proteins and LC3 to recruit protein cargo to

autophagosomes [55, 56]. As aggregated forms are de-
graded by autophagy [57], p62 also serves a useful
marker for autophagic flux. Additionally, p62 interacts
with polyubiquitinated forms of AD-associated protein tau
and accumulates in other related tauopathies [58, 59].

Maturation of Autophagic Vacuoles

Maturation of autophagosomes involves fusion with early/late
endosomes or withmultivesicular bodies [7, 60–65]. Amongst
the key players responsible for these fusion events are micro-
tubules [66–70], soluble N-ethylmaleamide-sensitive factor
attachment protein receptor (SNARE) proteins [71, 72], and
ultraviolet radiation resistance-associated gene protein [73].
Additionally, the small GTPase Rab family of proteins, espe-
cially Rab7, has been implicated in maturation and fusion of
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Fig. 1 Keymolecular players in autophagic flux. Autophagy induction is
mediated by mammalian target of rapamycin (mTOR) complex
(mTORC)1, adenosine monophosphate-activated protein kinase
(AMPK), and Unc-51 like kinase 1 (ULK1), which interact with
autophagy-related protein (ATG)9 and Beclin 1 complexes during
nucleation of the isolation membrane. Isolation membrane elongation is
dependent upon the Atg12–Atg5•Atg16L complex and microtubule-
associated protein 1A/1B-light chain 3 (LC3)-II. The scaffolding
protein p62 recruits autophagic protein substrates to LC3-bound
autophagosomal membranes. The structure then encloses to form an

autophagosome. During maturation, autophagosomes can directly fuse
with lysosomes or with endosomes and multivesicular bodies to form
amphisomes, which is regulated by Rab, solube N-ethylmaleamide-
sensitive factor attachment protein receptor (SNARE), and retromer
proteins. Autophagic cargo (including organelles and protein
aggregates) and the inner membranes of autophagosomes are digested
by lysosomal enzymes during lysosomal fusion, which is mediated by the
SNARE and Rab proteins. The acidic environment of lysosomes is
maintained by vacuolar-ATPase
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amphisomes with lysosomes [74, 75]. Rab11 has been shown
to promote late endosome–autophagosome fusion by
interacting with Hook protein [64], which normally anchors
late endosomes tightly to microtubules [67]. In addition to
these, other Rab proteins have been implicated in autophagy
[76, 77]. Rab protein inactivation by specific GTPase-
activating proteins may provide a potential drug target that
could increase Rab function, thereby enhancing autophagic
maturation.

Retromer is a conserved protein sorting and trafficking
complex that contains an assembly of proteins that associate
with endosomes and regulate protein transport from
endosomes to the trans-Golgi network and to cell membrane
[78–80]. A study in Caenorhabditis elegans indicated a role
for a Beclin 1 ortholog in retromer function [81], suggesting
crosstalk between the endosomal and autophagy systems.
Furthermore, mutations in vacuolar protein sorting 35, part
of the retromer trimer complex, disrupt Atg9 trafficking and
ultimately impair autophagy [82].

Axonal Transport

Mammalian autophagosomes are formed in various re-
gions of the cytoplasm and, upon maturation, are
transported retrogradely to lysosomes, which are pri-
marily located in the cell body or juxta-nuclear region.
Microtubules and the dynein motor complex mediate
retrograde transport and have been directly implicated
in autophagosomal transport and fusion of autophagic/
endocytic vesicles with lysosomes [83–85]. Live imag-
ing studies in primary dorsal root ganglion neurons
revealed that punctate green fluorescent protein–LC3
structures form in distal neurites, where they initially
undergo bidirectional transport, but are eventually
transported predominantly in the retrograde direction,
which is associated with autophagosome maturation
[86]. A recent study suggests that competitive binding
of kinesin and dynein contributes to the initial bidirec-
tional movement of autophagic structures; however,
when scaffolding protein c-Jun NH2-terminal kinase-
interacting protein-1 binds to LC3, the kinesin motor
complex is inhibited, thus allowing for sustained
dynein-mediated transport of autophagosomes in the
retrograde direction [66]. Rab7 has also been implicat-
ed in the transport of autophagosomes along microtu-
bules via its interaction with FYVE and coiled-coil
domain containing 1 [87]. As autophagic vesicles in
neurons are often transported across long distances
from distal axons to the cell bodies where they fuse
with lysosomes, drugs that promote transport may be
effective in alleviating impaired autophagic flux in
neurodegenerative disease.

Lysosomal Fusion and Degradation

Autolysosomal fusion depends on at least 3 independent
factors: transport of autophagosomes/amphisomes to lyso-
somes, acidic lysosomal pH, and lysosomal membrane pro-
teins (Fig. 1). Membrane protein complexes—class C core
vacuole/endosome tethering factor, SNARE, and homotypic
fusion and vacuole protein sorting, which is thought to be
modulated by Rab7 [88]—act as tethers that facilitate fusion
between autophagic vesicles and lysosomes [89, 90].
SNAREs are localized on both mature autophagosomes/
amphisomes and lysosomes, and act as a bridge between the
2 structures to initiate fusion [72, 91]. While the majority of
SNARE proteins are localized to endosomes and synaptic
vesicles, syntaxin17 has recently been identified as an
autophagosome-specific SNARE [92, 93].

The acidic pH of lysosomes is critical for their function and
is maintained largely by vacuolar-type H+-ATPase, which
pumps protons into the lysosomal lumen [94, 95]. Homeostat-
ic autophagic flux requires proper lysosomal acidity and is
completely halted by vacuolar-type H+-ATPase inhibitor
bafilomycin A1 [96]. Similarly, a deficiency of lysosomal
cathepsin enzymes disrupts autophagic flux causing the accu-
mulation of autophagosomes and undigested autophagic car-
go [97, 98]. Additionally, the loss of lysosomal associated
membrane protein-2, which is involved in the selective uptake
of proteins by the lysosome [99], leads to the accumulation of
autophagic vacuoles [100]. As the final effectors of the au-
tophagic machinery, lysosomal dysfunction leads to the block-
age of the whole system, as evidenced in the lysosomal
storage diseases [101].

AD Pathogenesis and Link to Autophagy

AD is characterized pathologically by the formation of extra-
cellular plaques consisting of insoluble aggregated amyloid-β
(Aβ) peptides and neurofibrillary tangles (NFTs) containing
aggregated microtubule-associated tau. β-amyloid precursor
protein (APP) is a transmembrane protein that is cleaved by
α-, β-, and γ-secretases to form amyloidogenic and
nonamyloidogenic peptides [102]. Familial mutations in
APP and γ-secretase components presenilin-1 (PS1) or
presenilin-2, cause enhanced production of Aβ peptides,
which are prone to self-aggregation and the formation of
oligomers, fibrils, and plaques [103]. Tau normally binds to
and stabilizes microtubules; however, genetic tau mutations or
hyperphosphorylation leads to detachment from microtubules
and misfolding, followed by formation of pretangle aggre-
gates and eventual deposition into filamentous inclusions
(NFTs) [104]. AD pathology is also closely associated with
inflammatory responses, including microglial clustering in
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and around dense core Aβ plaques [105], elevated levels of
proinflammatory cytokines [106], and microglial activation
that precedes NFT formation [107]. Additionally, genetic
variants of triggering receptor expressed on myeloid cells-2
and CD33, which encode microglial receptors that regulate
phagocytosis and inflammatory response, are significant risk
factors in developing AD [108, 109]. As the disease pro-
gresses, there is widespread synaptic and neuritic degenera-
tion, and subsequent neuronal cell death.

A growing body of evidence points to defective autophagic
clearance as one of the disease-causing culprits of AD patho-
genesis. Autophagy plays a vital neuroprotective role in cen-
tral nervous system neurons, as it facilitates the removal of
aggregated ubiquitinated protein inclusions and is essential for
the prevention of neurodegeneration [110, 111]. Dysfunction-
al autophagy has been linked to many chronic proteinopathies,
including frontotemporal dementia (FTD), amyotrophic later-
al sclerosis, Parkinson’s disease (PD), Huntington’s disease
(HD), and AD [1, 112–119].

In response to increased levels of cytosolic proteins and/or
aggregates, autophagic induction or degradation may be
heightened in affected neurons. In both patients with AD
and the PS1/APP mouse model, there is a massive prolifera-
tion of autophagosomes and autolysosomes in dystrophic
neurites [114, 120], which are enriched in Aβ and γ-
secretase subunits [120, 121]. Whether the marked increase
of these structures reflects elevated autophagosome formation
or incomplete lysosomal/autolysosomal digestion is still under
debate; however, multiple studies point to the latter [4,
122–124]. Strong induction of autophagy in primary cortical
neurons leads to robust accumulation of mature autophagic
vesicles, rather than early autophagosomes [122, 125]. Lyso-
somal protease cathepsin D is highly upregulated in affected
regions of AD brains [126], suggesting a compensatory mech-
anism for insufficient lysosomal processing or degradation.
Impaired lysosomal degradation may also be connected to
early-onset familial AD mutations. PS1 is required for lyso-
somal acidification, and fibroblasts from mutated PS1 from
patients with familial AD have defective autophagic–lyso-
somal proteolysis, along with impaired autolysosome acidifi-
cation and cathepsin activation [4]. These studies suggest that
promoting lysosomal clearance would reverse AD pathogen-
esis and improve cognitive function. For example, enhancing
proteolysis in CRND8 transgenic mice through the deletion of
cathepsin inhibitor, cystatin B, ameliorates Aβ plaque load,
and learning and memory deficits [127].

While it is clear that improper lysosomal fusion and deg-
radation are closely associated with AD neuropathology and
enhancing lysosomal function reverses disease progression in
mice, there is growing evidence that autophagy induction is
also a viable therapeutic target that can ameliorate the patho-
logical features associated with AD. Autophagosome forma-
tion progressively declines during normal aging [128], and

may contribute to toxic protein accumulation in sporadic cases
of age-related neurodegenerative diseases. Mice with central
nervous system-specific deletion of essential autophagy
genes, Atg5 or Atg7, display progressive neurodegeneration
and pervasive polyubiquitinated protein inclusions [110, 111].
Genetic ablation of Atg7 has also been shown to exacerbate
Aβ pathology. APP transgenic mice crossed with conditional
knockout mice with forebrain-specific Atg7 deletion display
increased intracellular Aβ accumulation in neurons [129],
while mice with microglial-specific Atg7 ablation accumulate
higher levels of Aβ following stereotaxic injection of fibril
Aβ [130]. Similarly, the loss of Beclin 1 in the APP transgenic
mouse model promotes Aβ deposition, and can be rescued by
Beclin 1 viral gene transfer [5]. Postmortem examination of
brains from patients with AD reveals reduced levels of Beclin
1, which is involved in regulating APP processing and turn-
over [5, 131], while microglia isolated from postmortem AD
brains display lower levels of Beclin 1, which is associated
with defective microglial phagocytosis of Aβ in APP trans-
genic mice [132]. These studies suggest that promoting levels
of proteins associated with autophagy may have dual benefi-
cial effects in AD models by enhancing autophagic degrada-
tion of Aβ in neurons and phagocytosis and degradation by
microglia. This may also be relevant in microglial clearance of
circulating Aβ peptides or tau released from neurons, as well
as antibodies targeting these substrates.

Impaired autophagy increases levels of intracellular Aβ in
APP mice, but also reduces extracellular deposits of Aβ,
suggesting that while autophagy-stimulating compounds
may reduce toxic intracellular Aβ levels, they may also exac-
erbate secretion of extracellular Aβ over time [129]. Together,
these studies indicate an important role for autophagy in
maintaining homeostatic levels of Aβ, and suggest that ther-
apies targeted at autophagy may reduce Aβ-induced toxicity,
but have detrimental effects if the level of induction exceeds
lysosomal clearance of autophagic vacuoles. This is an impor-
tant element in developing autophagy drugs and assays for the
screening of new compounds.

Autophagy Therapeutics in Disease-related Protein
Clearance

The goal of most preclinical AD research programs is to focus
on discovering compounds that reduce tauopathy and Aβ
accumulation, and reverse cognitive impairment. To this
end, numerous transgenic animal models of AD have been
generated to express different familial mutations of APP, PS1,
tau, and combinations of these mutations. These models reca-
pitulate aspects of AD neuropathology, behavioral deficits,
and disease time course to varying degrees; therefore,
selecting the appropriate mouse model to test potential thera-
peutics warrants careful consideration. Additionally,
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conflicting results within the same mouse models may be due
to the route of administration, duration of treatment, and
disease stage at onset of treatment. These factors should be
considered in evaluating the data in the studies presented
below. To date, multiple compounds have been identified in
the context of AD and other neurodegenerative diseases that
stimulate autophagic clearance by promoting induction, traf-
ficking/maturation, or lysosomal fusion (Fig. 2).

Targeting Canonical Autophagy Induction Through mTOR
Signaling

Rapamycin

Multiple studies indicate that inhibition of mTOR increases
lifespan in yeast, C. elegans, and Drosophila [133–135], and
evidence suggests this effect is conserved in mammals
[136–138]. Rapamycin, a US Food and Drug Administration
(FDA)-approved antifungal antibiotic [139], anticancer cyto-
static agent [140], and immunosuppressant [141, 142],

inhibits mTOR signaling by forming a drug–receptor complex
with FKBP12, which binds with the mTORC1 complex [143].
In addition to enhancing longevity [144, 145], rapamycin
treatment has been shown, through autophagic induction, to
clear aggregate-prone forms of disease-related proteins in cell
and animal models of PD [1], HD [2, 119], and AD [146,
147].

Rapamycin was initially identified as an autophagy inducer
capable of clearing aggregate-prone forms of huntingtin and
α-synuclein [1, 148]. Rapamycin treatment induces clearance
of wild-type and mutant R406W tau, reduces eye toxicity, and
increases lifespan in aDrosophilamodel of AD, and promotes
clearance of nonmicrotubule-bound aggregate-prone tau in
COS-7 cells [119]. In 7PA2 cells (Chinese hamster ovary cells
that stably express mutant APP), Aβ levels are reduced after
rapamycin treatment [149]. These findings were extended to
the 3×TgAD mouse model of AD (a triple transgenic mouse
that displays both Aβ plaques and tau tangles) [150].
Rapamycin leads to a reduction in both phospho-tau
(Thr181) and Aβ levels in the CA1 region of hippocampus
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and reversal of early learning and memory deficits in 3×
TgAD mice [149]. Interestingly, mTOR kinase activity in-
creases in the hippocampus and cortex of these mice with
age, suggesting a reduction in autophagic activity over time
[149]. These studies further support the notion that induction
of autophagy may be beneficial in clearance of aggregate-
prone proteins/peptides. In another study, 3×TgAD mice
treated with rapamycin early in life (starting at 2 months)
exhibited reduced phospho-tau (at the Ser212, Thr214, and
Thr231 residues) and Aβ pathology, and showed preserved
learning and memory function without causing overt side
effects [147]. Studies in hAPP-J20 mice, which have high
hippocampal levels of Aβ1-42 peptide and synaptic degenera-
tion [151], confirmed that rapamycin boosted autophagy,
which improved behavioral deficits and also decreased Aβ42

levels, but not Aβ40 [146].

Rapamycin Analogs

Although rapamycin crosses the blood–brain barrier (BBB), it
has poor water solubility and stability in solution [152].
Rapamycin analog, cell cycle inhibitor 779 (also known as
temsirolimus), is an FDA-approved cancer drug, with im-
proved pharmacological properties comparable to rapamycin.
Like rapamycin, temsirolimus upregulates autophagy through
inhibition of the mTOR pathway, and has been shown to
ameliorate motor dysfunction and neuropathology in mouse
models of 2 polyglutamine disorders [148, 153]. Two recent
studies suggest a neuroprotective role for temisirolimus in AD
models. Temsirolimus administration in APP/PS1 mice re-
duces Aβ plaque load and alleviates spatial learning and
memory impairments through its activation of autophagy
[154]. Likewise, the same group showed the beneficial effects
of temsirolimus on tauopathy. Temsirolimus treatment in
okadaic acid-treated SH-SY5Y cells (which induces tau
hyperphosphorylation) and P301S tau transgenic mice re-
duces levels of hyperphosphorylated tau, while rescuing spa-
tial learning deficits in mice through autophagy induction
[155].

The Benefits and Risks of mTOR-dependent Autophagy
Induction

Despite the promising effects of drugs that enhance autophagy
through inhibition of mTOR, long-term administration of
compounds that impede mTOR activity may have detrimental
effects. The mTOR signaling cascade is required for protein
synthesis associated with synaptic plasticity and memory for-
mation in hippocampus (reviewed in [156]); therefore, the
reversal of cognitive dysfunction observed in mice treated
with mTOR inhibitors may be transitory, while long-term
administration required in chronic disorders like AD may
eventually exacerbate memory loss over time owing to

untoward effects from inhibiting protein synthesis. Addition-
ally, long-term use of rapamycin and its analogs may cause a
broad array of side effects, including, but not limited to,
increased infections, skin disorders, swelling of the lower
extremities, reduced male fertility, hyperlipidemia, insulin
resistance, and diabetes mellitus [157–161].

mTOR-independent Autophagy Inducers

Small-molecule Screening

Initial screens for small-molecule autophagy enhancers that
activate autophagy in an mTOR-independent manner identi-
fied several compounds that reduced mutant forms of
huntingtin and A53T α-synuclein aggregates in cell models,
and were neuroprotective in Drosophila models of HD [162].
Small-molecule enhancer of rapamycin-28, an autophagy in-
ducer with minimal cytotoxic effects, reduces Aβ and APP/C-
terminal fragment accumulation in N2a-APP neuroblastoma
cells [163]. FDA-approved hypertensive drugs, clonidine and
the related drug rilmendine, were identified as autophagy
enhancers in a screen of compounds that cleared aggregate-
prone forms ofα-synuclein and huntingin in PC12 cells [164].
While both drugs bind α2-adrenoceptors and I1 imidazoline
receptors (I1R), rilmendine has a much greater specificity for
I1R, and therefore fewer potential side effects. Rilmendine
rescues motor dysfunction and decreases soluble mutant
huntingtin levels, but not aggregates, in a transgenic mouse
model of HD; however, owing to high dosing, treated mice
experienced adverse effects that would limit its therapeutic
potential. Nevertheless, converging data support the view that
compounds that induce autophagic clearance can ameliorate
disease pathogenesis and restore physiological function
(Fig. 2).

Methylene Blue

In a screen of compounds that inhibit heparin-induced tau
aggregation into filaments without disrupting microtubule
interactions, several phenothiazines were identified with
IC50 (half maximal inhibitory concentration) values in the
low micromolar range [165]. Phenothiazines are clinically
used as neuropsychotic agents. They readily cross the BBB
and are generally well tolerated without major side effects.
Methylthioninium chloride, also known as methylene blue
(MB), is a non-neuroleptic phenothiazine that has been shown
to reduce aggregation of truncated tau and Aβ oligomerization
in vitro [166, 167], and acts as a memory-enhancing drug
[168]. As MB has pleiotropic effects, including modulation
of cyclic guanosine monophosphate signaling and synaptic
neurotransmission, as well as inhibition of chaperone protein
heat shock protein 70 (which promotes degradation) [169], it
is unclear exactly how MB mediates its aggregate-inhibiting
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properties. However, a study in a mouse hippocampal cell line
demonstrated that MB induces autophagy [170].

Studies from our laboratory have shown that MB reduces
aggregated and phosphorylated tau in the JNPL3 mouse mod-
el (which expresses the P301L tau mutation) following treat-
ment in ex vivo organotypic brain slice culture or administra-
tion in vivo by oral gavage [171]. MB increased levels of
autophagy markers LC3, Beclin 1, and cathepsin D, suggest-
ing that MB-induced clearance of tau is associated with au-
tophagy activation [171]. While focal infusion of MB, by
osmotic minipump, improved cognitive function and reduced
tau levels in rTg4510 mice (another transgenic line expressing
the P301L tau mutation), only long-term, high-dose adminis-
tration of MB (ad libitum) beginning before the formation of
NFTs led to the reduction of soluble tau and reversal of spatial
learning impairments [172]. These effects were not observed
following long-term, low-dose treatments at the same age, and
tau NFT pathology was not reversed in either dosing regimen.
In another study, MB treatment in 17-month-old rTg4510
mice (when mice already display substantial hippocampal
and cortical neurofibrillary tangles) did not reduce existing
NFT pathology [173]. In the triple transgenic 3×TgAD mod-
el, where mice develop both plaques and tangles, MB signif-
icantly decreases soluble Aβ, but does not reduce tau phos-
phorylation or mislocalization [174]. The conflicting results of
these studies may be attributed to the use of various mouse
models (under the control of different promoters), time points
of intervention (where late stage intervention is less promising
than earlier time points), brain bioavailability [172], as well as
dosing regimen (routes of administration and dosing
schedules).

MB may have multiple targets, as a recent study suggests
that AMPK mediates MB-induced neuroprotection, indepen-
dent of mTOR signaling [170]. MB (also known as Rember)
may act as a potent tau aggregation inhibitor and has been
shown to slow cognitive decline in patients with mild-to-
moderate AD in a phase 2 trial [175]. Rember (TauRx,
Singapore) is currently in phase 3 clinical trials in pa-
tients with behavioral-variant FTD [176].

Inhibitors of Myo-inositol-1,4,5,-Triphosphate and Glycogen
Synthase Kinase-3β Signaling

Autophagy can be activated through several known mTOR-
independent mechanisms. One such pathway involves the
reduction of myo-inositol-1,4,5,-triphosphate (IP3) levels to
induce autophagy. IP3 is a second messenger that mediates the
release of calcium from the ER through its receptor, IP3R. A
recent study suggests that the IP3R negatively regulates au-
tophagy via interactions with the Beclin 1 complex [177]. The
IP3R antagonist xestospongin B disrupts the IP3R–Beclin 1
interaction, thereby inducing autophagy [177]. Lithium, a
major treatment for bipolar affective disorder, inhibits inositol

monophosphatase, which reduces IP3 signaling and thus
upregulates autophagy. Lithium treatment in cell models of
HD and PD reduced the accumulation of aggregate-prone
forms of huntingtin and α-synuclein, respectively [178]. Lith-
ium also inhibits glycogen synthase kinase (GSK)-3β (a ki-
nase that hyperphosphorylates tau leading to NFT formation),
which indirectly suppresses autophagy through its activation
of mTOR [179]. Owing to its opposing effects on autophagy,
Sarkar et al. [179] have proposed that lithium, in combination
with rapamycin, is an effective brain-penetrant therapy to
induce autophagy, and suggest that lower doses for each drug
can be used in combination to induce autophagy while poten-
tially reducing harmful side effects. Although this combina-
torial therapy has only been tested in Drosophila models of
HD, lithium may also provide beneficial effects in ameliorat-
ing tauopathy. In addition, GSK-3β inhibition directly im-
proves lysosomal function by increasing biogenesis and acid-
ification, and increasing APP and C-terminal fragment degra-
dation [180, 181]. NP12, a specific GSK-3β inhibitor, reduces
neuronal loss, astrocyte activity, and Aβ/tau pathology, and
improves cognitive function in mice carrying APPSwedish mu-
tations K670N and M671L and tau mutations G272V, P301L,
and R406W [182].

Trehalose

Trehalose is a naturally occurring nonreducing disaccharide,
consisting of 2 glucose molecules, that is produced endoge-
nously in bacteria, fungi, plants, and invertebrates as a re-
sponse to environmental stressors [183]. Trehalose treatment
in vertebrates and mammalian-derived cell lines confers pro-
tection against oxidative damage, prevents protein aggrega-
tion, and promotes protein interactions by acting as a molec-
ular chaperone [184]. Trehalose was initially identified as
being neuroprotective through chemical screening in mutant
huntingtin models and its inhibition of oligomeric Aβ40 ag-
gregation [185, 186], and has since been shown to reduce
disease-related protein aggregates associated with several neu-
rodegenerative diseases in vitro through its induction of
autophagy [162, 187].

In animal AD models, trehalose protects against Aβ and
tau accumulation. Direct injection of trehalose into the lateral
ventricles of APP/PS1 mice rescues deficits in spatial memory
and learning, and reduces Aβ plaque load [188]. In transgenic
mutant P301S tau models, ad libitum administration of treha-
lose reduces sarkosyl-insoluble tau aggregates and rescues cell
death in the cortex and brainstem, but does not prevent motor
deficits [189]. p62 levels are also reduced following trehalose
treatment, indicating that autophagic induction is associated
with tau removal. Data from our laboratory reveal similar
effects in rTg4510 and JNPL3 transgenic tau mice treated
with trehalose. Treated mice exhibit enhanced levels of
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autophagy markers, decreased tau aggregation, and improved
performance in motor and cognitive behavioral tests [190].

Trehalose decreases the levels of endogenous tau in prima-
ry cortical neurons and reduces aggregates of tau with an
FTD-17 mutation in N2a neuroblastoma cells, presumably
by autophagy [191]. In addition to promoting autophagy,
trehalose directly prevents tau aggregation in vitro [191],
likely through its ability to stabilize proteins in their native
form, thereby suppressing aggregation [192]. Therefore, tre-
halose may be a viable preventative therapy owing to its dual
neuroprotective mechanisms.

Although multiple studies have demonstrated that tre-
halose confers beneficial effects on protein aggregation,
behavior, and cell survival in an mTOR-independent
manner [193], and leads to a dose- and time-dependent
increase in the number of autophagosomes and autopha-
gic markers [194], the specific autophagy-related molec-
ular mechanisms have yet to be identified. A recent
study in the mutant superoxide dismutase (SOD)1(G93A)
mouse model of ALS suggests that trehalose treatment
enhances autophagic flux. Ad libitum administration of
trehalose reduced p62, ubiquitin, and SOD1 accumula-
tion, while alleviating impaired autophagic flux [195].
While SOD1(G93A) mice exhibited elevated levels of
Atg5, LC3-II, and increased numbers of autophagosomes
compared with wild-type mice, transgenic mice treated
with trehalose showed no significant change in autopha-
gic induction markers compared with sucrose-treated
control mice, suggesting that trehalose may not induce
autophagy, but possibly enhances clearance (lower
autophagosomes to autolysosomes ratio). Alternatively,
these results may indicate that trehalose treatment com-
bined with neuropathological conditions leads to more
efficient lysosomal clearance. More studies in AD
models will be necessary to pinpoint the mechanisms
underlying the beneficial effects of trehalose in alleviat-
ing tauopathies and Aβ accumulation.

Trehalose is found in plants such as kelp and aloe,
and is currently used as a dietary supplement and sugar
substitute in food. Its druggable properties (e.g., treha-
lose is nontoxic at high concentrations, tolerated by
humans, and readily bioavailable in the periphery and
the brain) make it a suitable candidate for chronic
treatment in neurodegenerative diseases. However, as
trehalose is a sugar, chronic administration would re-
quire monitoring for diabetic-like complications. Fur-
thermore, the chemical structure of trehalose does not
lend itself to modification as a lead compound. There-
fore, uncovering the mechanism of action for trehalose-
mediated clearance of tau through autophagy is of par-
ticular interest. Identifying the signaling pathways that
govern these effects also holds therapeutic potential as
drug targets.

Compounds Promoting Autophagosome Maturation,
Transport, and Fusion

Microtubule stabilizers have great potential as an adjuvant
therapy to autophagy inducers. Histone deacetylase in-
hibitors, such as sodium valproate, sodium butyrate, and
suberoylanilide hydroxamic acid, have been shown to reduce
memory deficits in the APPSwedish/PS1ΔE9 mouse model of
AD [196, 197], and have recently been shown to activate
autophagy in rabbit cardiomyocytes [198]. Autophagy induc-
tion by histone deacetylase inhibitors has been attributed to
microtubule stabilization due to increased tubulin acetylation
[199–201]. Paclitaxel, another microtubule stabilizer, amelio-
rates motor impairment while improving fast axonal transport
and axonal morphology in tau transgenic mice [202]. Con-
flicting reports, however, have emerged regarding the role of
paclitaxel in autophagy induction [203, 204]. Through its
stabilization of microtubules, paclitaxel may be a viable ther-
apy for enhancing autophagic transport and fusion. This drug,
however, requires further investigation as the bioavailability
of paclitaxel in brain is suboptimal [205, 206]. Microtubule
stabilizer, Epothilone D readily crosses the BBB [206], and
has recently been shown to increase axonal stability, function,
and transport, reduce tau pathology, preserve hippocampal
morphology, and prevent cognitive deficits in PS19, 3×Tg,
and rTg4510 animal models of AD [207–209]. Epothilone D
(also known as BMS-241027) was tested in phase 1 clinical
trials for safety and tolerability; however, further studies were
discontinued based on unfavorable study outcomes
(ClinicalTrials.gov identifier NCT01492374). Dictyostatin,
triazolopyrimidines, and phenylpyrimidines have recently
been identified as brain-penetrant, microtubule-stabilizing
agents [210, 211], though their effects on autophagic flux
have not yet been validated.

Compounds that modulate lysosomal fusion include poten-
tial cystatin B and C antagonists [127], lysosomal cathepsin B
modulators [212], and GSK-3β inhibitors, such as lithium,
valproate, and NP12 [180, 181]. Genetic deletion of cystatin B
and C has been shown to improve neurological deficits and
restore autophagic dysfunction in the TgCRND8 and hAPP-
J20 mouse models of AD [127, 213]. However, conflicting
reports indicate that cystatin C is neuroprotective in several
neurodegenerative diseases, and these effects may be mediat-
ed by inducing autophagy [214–217]. Future studies should
examine the effects of cystatins in AD [218], and whether
neuroprotection is attenuated in the absence of autophagy.
Cathepsin B is a lysosomal/endosomal enzyme with neuro-
protective properties based on its protease activity, and in
particular, its Aβ1-42 cleavage function [219]. Z-Phe-Ala-
diazomethylketone, a positive modulator of cathepsin B ac-
tivity, reduces Aβ levels in 10–11-month-old APP mice with
Swedish and Indiana mutations (APPSwe/Ind) and in 20–22-
month-old APPswedish/PS1ΔE9 mice, protects against
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synaptic degeneration, and mitigates behavioral deficits [212].
Similarly, cathepsin D, another lysosomal/endosomal en-
zyme, has been implicated in clearance of Lewy bodies in
PD [220]. One way to pharmacologically enhance cathepsin B
and D activity is by administering pharmacological chaper-
ones similar to the ones used in lysosomal storage diseases
[221]. To date, no known molecule has been tested for this
property.

Conclusions

Enhancing autophagic clearance of toxic protein aggregates
through mTOR-dependent or mTOR-independent com-
pounds ameliorates protein aggregation, neuron survival,
and behavior. However, while converging evidence suggests
that augmenting autophagy is a promising therapeutic inter-
vention [162, 222], it may also overwhelm the lysosomal
machinery, leading to increased numbers of autophagosomes
and undigested autolysosomes that can impair axonal traffick-
ing and lead to dystrophic axons. In a mouse model of
excitotoxicity, constitutive activation of a glutamate receptor
induced the buildup of green fluorescent protein–LC3-la-
belled autophagosomes in dystrophic axons [223]. These data
suggest that excessive autophagosome formation may even-
tually form roadblocks to normal retrograde transport, causing
axonal swellings. However, in diseases like AD, inducing
autophagy may exacerbate already impaired lysosomal clear-
ance [125]. Therefore, it is important to consider the down-
stream effects of drug therapies targeted at each stage of
autophagy in different diseases, and how they might disturb
the delicate balance between autophagosome formation and
lysosomal degradation. We propose that a more viable thera-
peutic strategy for stimulating autophagic clearance of
disease-related proteins in AD and other neurodegenerative
diseases incorporates not only drugs that increase au-
tophagic induction, but also those that target later steps
in the autophagy–lysosome system, thus improving au-
tophagic flux (Fig. 2). Although the right combination of
drugs may differ based on the disease type, stage of
progression, underlying cause (i.e., genetic vs idiopathic),
and a variety of other factors, it is clear that modulation
of neuronal autophagy may be a promising therapeutic
intervention to attenuate AD pathogenesis and rescue
cognitive impairment.
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